CODES

ADOPTS WITH AMENDMENTS:

International Residential Code 2018 (IRC 2018)

Part I — Administrative

Part II — Definitions

Part III — Building Planning and Construction

Part IV — Energy Conservation

Part V — Mechanical

Part VI — Fuel Gas

Part VII — Plumbing

Part VIII — Electrical

Part IX — Referenced Standards

Heads up: There are no suggested sections in this chapter.
Heads up: There are no amended sections in this chapter.

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

The design procedures are based on the minimum static pressure available from the supply source, the head changes in the system caused by friction and elevation, and the rates of flow necessary for operation of various fixtures.

Accordingly, other sizing or design methods conforming to good engineering practice standards are acceptable alternatives to those presented herein.

Obtain the necessary information regarding the minimum daily static service pressure in the area where the building is to be located. If the building supply is to be metered, obtain information regarding friction loss relative to the rate of flow for meters in the range of sizes likely to be used. Friction loss data can be obtained from most manufacturers of water meters.
Estimate the supply demand of the building main and the principal branches and risers of the system by totaling the corresponding demand from the applicable part of Table AP103.3(3).
Decide from Table P2903.1 what is the desirable minimum residual pressure that should be maintained at the highest fixture in the supply system. If the highest group of fixtures contains flushometer valves, the pressure for the group should be not less than 15 pounds per square inch (psi) (103.4 kPa) flowing. For flush tank supplies, the available pressure should be not less than 8 psi (55.2 kPa) flowing, except blowout action fixtures must not be less than 25 psi (172.4 kPa) flowing.
Pipe sizes can be selected using the following procedure or by use of other design methods conforming to acceptable engineering practice that are approved by the building official. The sizes selected must not be less than the minimum required by this code.

These pressures are as follows:

  1. Pressure required at fixture to produce required flow. See Sections P2903.1 of this code and Section 604.3 of the International Plumbing Code.
  2. Static pressure loss or gain (due to head) is computed at 0.433 psi per foot (9.8 kPa/m) of elevation change.

    Example: Assume that the highest fixture supply outlet is 20 feet (6096 mm) above or below the supply source. This produces a static pressure differential of 8.66 psi (59.8 kPa) loss [20 feet by 0.433 psi per foot (2096 mm by 9.8 kPa/m)].

  3. Loss through water meter. The friction or pressure loss can be obtained from meter manufacturers.
  4. Loss through taps in water main.
  5. Loss through special devices, such as filters, softeners, backflow prevention devices and pressure regulators. These values must be obtained from the manufacturer.
  6. Loss through valves and fittings. Losses for these items are calculated by converting to the equivalent length of piping and adding to the total pipe length.
  7. Loss caused by pipe friction can be calculated where the pipe size, pipe length and flow through the pipe are known. With these three items, the friction loss can be determined. For piping flow charts not included, use manufacturers' tables and velocity recommendations.

Note: For all examples, the following metric conversions are applicable.

  • 1 cubic foot per minute = 0.4719 L/s.
  • 1 square foot = 0.0929 m2.
  • 1 degree = 0.0175 rad.
  • 1 pound per square inch = 6.895 kPa.
  • 1 inch = 25.4 mm.
  • 1 foot = 304.8 mm.
  • 1 gallon per minute = 3.785 L/m.

The size of water service mains, branch mains and risers by the segmented loss method, must be determined by knowing the water supply demand [gpm (L/m)], available water pressure [psi (kPa)] and friction loss caused by the water meter and developed length of pipe [feet (m)], including the equivalent length of fittings. This design procedure is based on the following parameters:

  1. The calculated friction loss through each length of pipe.
  2. A system of pressure losses, the sum of which must not exceed the minimum pressure available at the street main or other source of supply.
  3. Pipe sizing based on estimated peak demand, total pressure losses caused by difference in elevation, equipment, developed length and pressure required at the most remote fixture; loss through taps in water main; losses through fittings, filters, backflow prevention devices, valves and pipe friction.

Because of the variable conditions encountered in hydraulic design, it is impractical to specify definite and detailed rules for the sizing of the water piping system. Current sizing methods do not address the differences in the probability of use and flow characteristics of fixtures between types of occupancies. Creating an exact model of predicting the demand for a building is impossible and final studies assessing the impact of water conservation on demand are not yet complete. The following steps are necessary for the segmented loss method.

  1. Preliminary. Obtain the necessary information regarding the minimum daily static service pressure in the area where the building is to be located. If the building supply is to be metered, obtain information regarding friction loss relative to the rate of flow for meters in the range of sizes to be used. Friction loss data can be obtained from manufacturers of water meters. Enough pressure must be available to overcome all system losses caused by friction and elevation so that plumbing fixtures operate properly. Section 604.6 of the International Plumbing Code requires that the water distribution system be designed for the minimum pressure available taking into consideration pressure fluctuations. The lowest pressure must be selected to guarantee a continuous, adequate supply of water. The lowest pressure in the public main usually occurs in the summer because of lawn sprinkling and supplying water for air-conditioning cooling towers. Future demands placed on the public main as a result of large growth or expansion should be considered. The available pressure will decrease as additional loads are placed on the public system.
  2. Demand load. Estimate the supply demand of the building main and the principal branches and risers of the system by totaling the corresponding demand from the applicable part of Table AP103.3(3). When estimating peak demand, sizing methods typically use water supply fixture units (w.s.f.u.) [see Table AP103.3(2)]. This numerical factor measures the load-producing effect of a single plumbing fixture of a given kind. The use of fixture units can be applied to a single basic probability curve (or table), found in the various sizing methods [see Table AP103.3(3)]. The fixture units are then converted into a gpm (L/m) flow rate for estimating demand.

    1. 2.1. Estimate continuous supply demand in gpm (L/m) such as for lawn sprinklers, air conditioners, etc., and add the sum to the total demand for fixtures. The result is the estimated supply demand for the building supply. Fixture units cannot be applied to constant-use fixtures, such as hose bibbs, lawn sprinklers and air conditioners. These types of fixtures must be assigned the gpm (L/m) value.
  3. Selection of pipe size. This water pipe sizing procedure is based on a system of pressure requirements and losses, the sum of which must not exceed the minimum pressure available at the supply source. These pressures are as follows:

    1. 3.1. Pressure required at the fixture to produce required flow. See Section P2903.1 of this code and Section 604.3 of the International Plumbing Code.
    2. 3.2. Static pressure loss or gain (because of head) is computed at 0.433 psi per foot (9.8 kPa/m) of elevation change.
    3. 3.3. Loss through a water meter. The friction or pressure loss can be obtained from the manufacturer.
    4. 3.4. Loss through taps in water main [see Table AP103.3(4)].
    5. 3.5. Loss through special devices, such as filters, softeners, backflow prevention devices and pressure regulators. These values must be obtained from the manufacturers.
    6. 3.6. Loss through valves and fittings [see Tables AP103.3(5) and AP103.3(6)]. Losses for these items are calculated by converting to the equivalent length of piping and adding to the total pipe length.
    7. 3.7. Loss caused by pipe friction can be calculated where the pipe size, pipe length and flow through the pipe are known. With these three items, the friction loss can be determined using Figures AP103.3(2) through AP103.3(7). Where using charts, use pipe inside diameters. For piping flow charts not included, use manufacturers' tables and velocity recommendations. Before attempting to size any water supply system, it is necessary to gather preliminary information including available pressure, piping material, select design velocity, elevation differences and developed length to the most remote fixture. The water supply system is divided into sections at major changes in elevation or where branches lead to fixture groups. The peak demand must be determined in each part of the hot and cold water supply system. The expected flow through each section is determined in w.s.f.u. and converted to gpm (L/m) flow rate. Sizing methods require determination of the "most hydraulically remote" fixture to compute the pressure loss caused by pipe and fittings. The hydraulically remote fixture represents the most downstream fixture along the circuit of piping requiring the most available pressure to operate properly. Consideration must be given to all pressure demands and losses, such as friction caused by pipe, fittings and equipment; elevation; and the residual pressure required by Table P2903.1. The two most common and frequent complaints about water supply system operation are lack of adequate pressure and noise.

Problem: What size Type L copper water pipe, service and distribution will be required to serve a two-story factory building having on each floor, back-to-back, two toilet rooms each equipped with hot and cold water? The highest fixture is 21 feet above the street main, which is tapped with a 2-inch corporation cock at which point the minimum pressure is 55 psi. In the building basement, a 2-inch meter with a pressure drop of not more than 11 psi and 3-inch reduced pressure principle backflow preventer with a pressure drop of not more than 9 psi are to be installed. The system is shown in Figure AP103.3(1). To be determined are the pipe sizes for the service main, and the cold and hot water distribution pipes.

Solution: A tabular arrangement such as shown in Table AP103.3(1) should first be constructed. The steps to be followed are indicated by the tabular arrangement itself as they are in sequence, Columns 1 through 10 and Lines A through L.

Step 1

Columns 1 and 2: Divide the system into sections breaking at major changes in elevation or where branches lead to fixture groups. After Point B [see Figure AP103.3(1)], separate consideration will be given to the hot and cold water piping. Enter the sections to be considered in the service and cold water piping in Column 1 of the tabular arrangement. Column 1 of Table AP103.3(1) provides a line-by-line, recommended tabular arrangement for use in solving pipe sizing.

The objective in designing the water supply system is to ensure an adequate water supply and pressure to all fixtures and equipment. Column 2 provides the psi (kPa) to be considered separately from the minimum pressure available at the main. Losses to take into consideration are the following: the differences in elevations between the water supply source and the highest water supply outlet; meter pressure losses; the tap in main loss; special fixture devices, such as water softeners and backflow prevention devices; and the pressure required at the most remote fixture outlet.

The difference in elevation can result in an increase or decrease in available pressure at the main. Where the water supply outlet is located above the source, this results in a loss in the available pressure and is subtracted from the pressure at the water source. Where the highest water supply outlet is located below the water supply source, there will be an increase in pressure that is added to the available pressure of the water source.

Column 3: Using Table AP103.3(3), determine the gpm (L/m) of flow to be expected in each section of the system. These flows range from 28.6 to 108 gpm. Load values for fixtures must be determined as w.s.f.u. and then converted to a gpm rating to determine peak demand. Where calculating peak demands, the w.s.f.u. are added and then converted to the gpm rating. For continuous flow fixtures, such as hose bibbs and lawn sprinkler systems, add the gpm demand to the intermittent demand of fixtures. For example, a total of 120 w.s.f.u. is converted to a demand of 48 gpm. Two hose bibbs × 5 gpm demand = 10 gpm. Total gpm rating = 48.0 gpm + 10 gpm = 58.0 gpm demand.

Step 2

Line A: Enter the minimum pressure available at the main source of supply in Column 2. This is 55 psi (379.2 kPa). The local water authorities generally keep records of pressures at different times of the day and year. The available pressure can be checked from nearby buildings or from fire department hydrant checks.

Line B: Determine from Table P2903.1 the highest pressure required for the fixtures on the system, which is 15 psi (103.4 kPa), to operate a flushometer valve. The most remote fixture outlet is necessary to compute the pressure loss caused by pipe and fittings, and represents the most downstream fixture along the circuit of piping requiring the available pressure to operate properly as indicated by Table P2903.1.

Line C: Determine the pressure loss for the meter size given or assumed. The total water flow from the main through the service as determined in Step 1 will serve to aid in the meter selected. There are three common types of water meters; the pressure losses are determined by the American Water Works Association Standards for displacement type, compound type and turbine type. The maximum pressure loss of such devices takes into consideration the meter size, safe operating capacity [gpm (L/m)] and maximum rates for continuous operations [gpm (L/m)]. Typically, equipment imparts greater pressure losses than piping.

Line D: Select from Table AP103.3(4) and enter the pressure loss for the tap size given or assumed. The loss of pressure through taps and tees in psi (kPa) is based on the total gpm (L/m) flow rate and size of the tap.

Line E: Determine the difference in elevation between the main and source of supply and the highest fixture on the system. Multiply this figure, expressed in feet (mm), by 0.43 psi. Enter the resulting psi (kPa) loss on Line E. The difference in elevation between the water supply source and the highest water supply outlet has a significant impact on the sizing of the water supply system. The difference in elevation usually results in a loss in the available pressure because the water supply outlet is generally located above the water supply source. The loss is caused by the pressure required to lift the water to the outlet. The pressure loss is subtracted from the pressure at the water source. Where the highest water supply outlet is located below the water source, there will be an increase in pressure that is added to the available pressure of the water source.

Lines F, G and H: The pressure losses through filters, backflow prevention devices or other special fixtures must be obtained from the manufacturer or estimated and entered on these lines. Equipment, such as backflow prevention devices, check valves, water softeners, instantaneous, or tankless water heaters, filters and strainers, can impart a much greater pressure loss than the piping. The pressure losses can range from 8 to 30 psi.

Step 3

Line I: The sum of the pressure requirements and losses that affect the overall system (Lines B through H) is entered on this line. Summarizing the steps, all of the system losses are subtracted from the minimum water pressure. The remainder is the pressure available for friction, defined as the energy available to push the water through the pipes to each fixture. This force can be used as an average pressure loss, as long as the pressure available for friction is not exceeded. Saving a certain amount for available water supply pressures as an area incurs growth, or because of the aging of the pipe or equipment added to the system is recommended.

Step 4

Line J: Subtract Line I from Line A. This gives the pressure that remains available from overcoming friction losses in the system. This figure is a guide to the pipe size that is chosen for each section, incorporating the total friction losses to the most remote outlet (measured length is called developed length).

Exception: Where the main is above the highest fixture, the resulting psi (kPa) must be considered a pressure gain (static head gain) and omitted from the sums of Lines B through H and added to Line J.

The maximum friction head loss that can be tolerated in the system during peak demand is the difference between the static pressure at the highest and most remote outlet at no-flow conditions and the minimum flow pressure required at that outlet. If the losses are within the required limits, every run of pipe will be within the required friction head loss. Static pressure loss is at the most remote outlet in feet × 0.433 = loss in psi caused by elevation differences.

Step 5

Column 4: Enter the length of each section from the main to the most remote outlet (at Point E). Divide the water supply system into sections breaking at major changes in elevation or where branches lead to fixture groups.

Step 6

Column 5: Where selecting a trial pipe size, the length from the water service or meter to the most remote fixture outlet must be measured to determine the developed length. However, in systems having a flushometer valve or temperature-controlled shower at the topmost floors, the developed length would be from the water meter to the most remote flushometer valve on the system. A rule of thumb is that size will become progressively smaller as the system extends farther from the main source of supply. A trial pipe size can be arrived at by the following formula:

Line J: (Pressure available to overcome pipe friction) × 100/equivalent length of run total developed length to most remote fixture × percentage factor of 1.5 (Note: a percentage factor is used only as an estimate for friction losses imposed for fittings for initial trial pipe size) = psi (average pressure drop per 100 feet of pipe).

For trial pipe size, see Figure AP103.3(3) (Type L copper) based on 2.77 psi and 108 gpm = 21/2 inches. To determine the equivalent length of run to the most remote outlet, the developed length is determined and added to the friction losses for fittings and valves. The developed lengths of the designated pipe sections are as follows:

A-B54 feet
B-C8 feet
C-D13 feet
D-E150 feet
Total developed length = 225 feet

The equivalent length of the friction loss in fittings and valves must be added to the developed length (most remote outlet). Where the size of fittings and valves is not known, the added friction loss should be approximated. A general rule that has been used is to add 50 percent of the developed length to allow for fittings and valves. For example, the equivalent length of run equals the developed length of run (225 feet × 1.5 = 338 feet). The total equivalent length of run for determining a trial pipe size is 338 feet.

Example: 9.36 (pressure available to overcome pipe friction) × 100/338 (equivalent length of run = 225 × 1.5) = 2.77 psi (average pressure drop per 100 feet of pipe).

Step 7

Column 6: Select from Table AP103.3(6) the equivalent lengths for the trial pipe size of fittings and valves on each pipe section. Enter the sum for each section in Column 6. (The number of fittings to be used in this example must be an estimate). The equivalent length of piping is the developed length plus the equivalent lengths of pipe corresponding to the friction head losses for fittings and valves. Where the size of fittings and valves is not known, the added friction head losses must be approximated. An estimate for this example is found in Table AP.1.

Step 8

Column 7: Add the figures from Columns 4 and 6, and enter in Column 7. Express the sum in hundreds of feet.

Step 9

Column 8: Select from Figure AP103.3(3) the friction loss per 100 feet of pipe for the gpm flow in a section (Column 3) and trial pipe size (Column 5). Maximum friction head loss per 100 feet is determined on the basis of the total pressure available for friction head loss and the longest equivalent length of run. The selection is based on the gpm demand, uniform friction head loss and maximum design velocity. Where the size indicated by the hydraulic table indicates a velocity in excess of the selected velocity, a size must be selected that produces the required velocity.

Step 10

Column 9: Multiply the figures in Columns 7 and 8 for each section and enter in Column 9.

Total friction loss is determined by multiplying the friction loss per 100 feet for each pipe section in the total developed length by the pressure loss in fittings expressed as equivalent length in feet (mm). Note: Section C-F should be considered in the total pipe friction losses only if greater loss occurs in Section C-F than in pipe Section D-E. Section C-F is not considered in the total developed length. Total friction loss in equivalent length is determined in Table AP.2.

Step 11

Line K: Enter the sum of the values in Column 9. The value is the total friction loss in equivalent length for each designated pipe section.

Step 12

Line L: Subtract Line J from Line K and enter in Column 10.

The result should always be a positive or plus figure. If it is not, repeat the operation using Columns 5, 6, 8 and 9 until a balance or near balance is obtained. If the difference between Lines J and K is a high positive number, it is an indication that the pipe sizes are too large and should be reduced, thus saving materials. In such a case, the operations using Columns 5, 6, 8 and 9 should be repeated.

The total friction losses are determined and subtracted from the pressure available to overcome pipe friction for the trial pipe size. This number is critical because it provides a guide to whether the pipe size selected is too large and the process should be repeated to obtain an economically designed system.

Answer: The final figures entered in Column 5 become the design pipe size for the respective sections. Repeating this operation a second time using the same sketch but considering the demand for hot water, it is possible to size the hot water distribution piping. This has been worked up as a part of the overall problem in the tabular arrangement used for sizing the service and water distribution piping. Note that consideration must be given to the pressure losses from the street main to the water heater (Section A-B) in determining the hot water pipe sizes.

For SI: 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m.

FIGURE AP103.3(1)

EXAMPLE—SIZING

TABLE AP103.3(1)

RECOMMENDED TABULAR ARRANGEMENT FOR USE IN SOLVING PIPE SIZING PROBLEMS

COLUMN12345678910
LineDescriptionPounds
per
square
inch
Gallons
per min
through
section
Length of
section
(feet)
Trial
pipe
size
(inches)
Equivalent
length of
fittings and
valves (feet)
Total
equivalent
length
[(Col. 4 +
Col. 6)/100
feet)]
Friction
loss per
100 feet of
trial size
pipe (psi)
Friction
loss in
equivalent
length
Column 8 x
Column 7
(psi)
Excess
pressure
over
friction
losses (psi)
AService and cold
water distribution
pipinga
Minimum pressure available at main55.00
BHighest pressure required at a fixture 15.00
CMeter loss 2" meter11.00
DTap in main loss 2" tap [see Table AP103.3(4)]1.61
EStatic head loss 21 ft × 0.43 psi/ft9.03
FSpecial fixture loss backflow preventer9.00
GSpecial fixture loss—Filter0.00
HSpecial fixture loss—Other0.00
ITotal overall losses and requirements (Sum of Lines B through H)45.64
JPressure available to overcome pipe friction (Line A minus Line I)9.36
Pipe section (from diagram) cold water distribution pipingA-B288108.05421/215.000.693.22.21
B-C264104.5821/20.50.0853.10.26
C-D13277.01321/27.000.201.90.38
C-Fb13277.015021/212.001.621.93.08
D-Eb13277.015021/212.001.621.93.08
KTotal pipe friction losses (cold)5.93
LDifference (Line J minus Line K)3.43
Pipe section (from diagram) Hot water Distribution Piping A'B'288108.05421/212.000.693.32.21
B'C'2438.0827.50.161.40.22
C'D'1228.61311/24.00.173.20.54
C'F'b1228.615011/27.001.573.25.02
D'E'b1228.615011/27.001.573.25.02
KTotal pipe friction losses (hot)7.99
LDifference (Line J minus Line K)1.37

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1 gallon per minute = 3.785 L/m.

  1. To be considered as pressure gain for fixtures below main (to consider separately, omit from "I" and add to "J").
  2. To consider separately, in Line K use Section C-F only if greater loss than the loss in Section D-E.

TABLE AP103.3(2)

LOAD VALUES ASSIGNED TO FIXTURESa

FIXTUREOCCUPANCYTYPE OF SUPPLY
CONTROL
LOAD VALUES, IN WATER SUPPLY FIXTURE UNITS (w.s.f.u.)
ColdHotTotal
Bathroom groupPrivateFlush tank2.71.53.6
Bathroom groupPrivateFlushometer valve6.03.08.0
BathtubPrivateFaucet1.01.01.4
BathtubPublicFaucet3.03.04.0
BidetPrivateFaucet1.51.52.0
Combination fixturePrivateFaucet2.252.253.0
Dishwashing machinePrivateAutomatic1.41.4
Drinking fountainOffices, etc.3/8" valve0.250.25
Kitchen sinkPrivateFaucet1.01.01.4
Kitchen sinkHotel, restaurantFaucet3.03.04.0
Laundry trays (1 to 3)PrivateFaucet1.01.01.4
LavatoryPrivateFaucet0.50.50.7
LavatoryPublicFaucet1.51.52.0
Service sinkOffices, etc.Faucet2.252.253.0
Shower headPublicMixing valve3.03.04.0
Shower headPrivateMixing valve1.01.01.4
UrinalPublic1" flushometer valve10.010.0
UrinalPublic3/4" flushometer valve5.05.0
UrinalPublicFlush tank3.03.0
Washing machine (8 lb)PrivateAutomatic1.01.01.4
Washing machine (8 lb)PublicAutomatic2.252.253.0
Washing machine (15 lb)PublicAutomatic3.03.04.0
Water closetPrivateFlushometer valve6.06.0
Water closetPrivateFlush tank2.22.2
Water closetPublicFlushometer valve10.010.0
Water closetPublicFlush tank5.05.0
Water closetPublic or privateFlushometer tank2.02.0

For SI: 1 inch = 25.4 mm, 1 pound = 0.454 kg.

  1. For fixtures not listed, loads should be assumed by comparing the fixture to one listed using water in similar quantities and at similar rates. The assigned loads for fixtures with both hot and cold water supplies are given for separate hot and cold water loads, and for total load. The separate hot and cold water loads are three-fourths of the total load for the fixture in each case.

Note: Fluid velocities in excess of 5 to 8 feet per second are not usually recommended.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to smooth new copper tubing with recessed (streamline) soldered joints and to the actual sizes of types indicated on the diagram.

FIGURE AP103.3(2)

FRICTION LOSS IN SMOOTH PIPEa (TYPE K, ASTM B88 COPPER TUBING)

TABLE AP103.3(3)

TABLE FOR ESTIMATING DEMAND

SUPPLY SYSTEMS PREDOMINANTLY FOR FLUSH TANKSSUPPLY SYSTEMS PREDOMINANTLY FOR FLUSHOMETERS
LoadDemandLoadDemand
(w.s.f.u.)(gpm)(cfm)(w.s.f.u.)(gpm)(cfm)
13.00.04104
25.00.0684
36.50.86892
48.01.06944
59.41.256592515.02.0052
610.71.430376617.42.326032
711.81.577424719.82.646364
812.81.711104822.22.967696
913.71.831416924.63.288528
1014.61.9517281027.03.60936
1115.42.0586721127.83.716304
1216.02.138881228.63.823248
1316.52.205721329.43.930192
1417.02.272561430.24.037136
1517.52.33941531.04.14408
1618.02.906241631.84.241024
1718.42.4597121732.64.357968
1818.82.5131841833.44.464912
1919.22.5666561934.24.571856
2019.62.6201282035.04.6788
2521.52.874122538.05.07984
3023.33.1147443042.05.61356
3524.93.3286323544.05.88192
4026.33.5157844046.06.14928
4527.73.7029364548.06.41664
5029.13.8900885050.06.684
6032.04.277766054.07.21872
7035.04.67887058.07.75344
8038.05.079848061.28.181216
9041.05.480889064.38.595624
10043.55.8150810067.59.0234
12048.06.4166412073.09.75864
14052.57.018214077.010.29336
16057.07.6197616081.010.82808
18061.08.1544818085.511.42964
20065.08.689220090.012.0312
22570.09.357622595.512.76644
25075.010.026250101.013.50168
27580.010.6944275104.513.96956
30085.011.3628300108.014.43744
400105.014.0364400127.016.97736
500124.016.57632500143.019.11624
750170.022.7256750177.023.66136
1,000208.027.805441,000208.027.80544
1,250239.031.949521,250239.031.94952
1,500269.035.959921,500269.035.95992
1,750297.039.702961,750297.039.70296
2,000325.043.4462,000325.043.446
2,500380.050.79842,500380.050.7984
3,000433.057.883443,000433.057.88344
4,000535.070.1824,000525.070.182
5,000593.079.272245,000593.079.27224

For SI: 1 gallon per minute = 3.785 L/m, 1 cubic foot per minute = 0.000471 m3/s.

Note: Fluid velocities in excess of 5 to 8 feet per second are not usually recommended.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to smooth new copper tubing with recessed (streamline) soldered joints and to the actual sizes of types indicated on the diagram.

FIGURE AP103.3(3)

FRICTION LOSS IN SMOOTH PIPEa (TYPE L, ASTM B88 COPPER TUBING)

TABLE AP103.3(4)

LOSS OF PRESSURE THROUGH TAPS AND TEES IN POUNDS PER SQUARE INCH (psi)

GALLONS PER MINUTESIZE OF TAP OR TEE (inches)
5/83/4111/411/223
101.350.640.180.08
205.382.540.770.310.14
3012.105.721.620.690.330.10
4010.203.071.230.580.18
5015.904.491.920.910.28
606.462.761.310.40
708.793.761.780.550.10
8011.504.902.320.720.13
9014.506.212.940.910.16
10017.947.673.631.120.21
12025.8011.005.231.610.30
14035.2015.007.122.200.41
15017.208.162.520.47
16019.609.302.920.54
18024.8011.803.620.68
20030.7014.504.480.84
22538.8018.405.601.06
25047.9022.707.001.31
27527.407.701.59
30032.6010.101.88

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 6.895 kPa, 1 gallon per minute = 3.785 L/m.

Note: Fluid velocities in excess of 5 to 8 feet per second are not usually recommended.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to smooth new copper tubing with recessed (streamline) soldered joints and to the actual sizes of types indicated on the diagram.

FIGURE AP103.3(4)

FRICTION LOSS IN SMOOTH PIPEa (TYPE M, ASTM B88 COPPER TUBING)

TABLE AP103.3(5)

ALLOWANCE IN EQUIVALENT LENGTHS OF PIPE FOR FRICTION LOSS IN VALVES AND THREADED FITTINGS (feet)

FITTING OR VALVEPIPE SIZE (inches)
1/23/4111/411/2221/23
45-degree elbow1.21.51.82.43.04.05.06.0
90-degree elbow2.02.53.04.05.07.08.010.0
Tee, run0.60.80.91.21.52.02.53.0
Tee, branch3.04.05.06.07.010.012.015.0
Gate valve0.40.50.60.81.01.31.62.0
Balancing valve0.81.11.51.92.23.03.74.5
Plug-type cock0.81.11.51.92.23.03.74.5
Check valve, swing5.68.411.214.016.822.428.033.6
Globe valve15.020.025.035.045.055.065.080.0
Angle valve8.012.015.018.022.028.034.040.0

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.0175 rad.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to smooth new steel (fairly smooth) pipe and to actual diameters of standard-weight pipe.

FIGURE AP103.3(5)

FRICTION LOSS IN FAIRLY SMOOTH PIPEa

TABLE AP103.3(6)

PRESSURE LOSS IN FITTINGS AND VALVES EXPRESSED AS EQUIVALENT LENGTH OF TUBEa (feet)

NOMINAL OR
STANDARD

SIZE (inches)
FITTINGSCouplingVALVES
Standard EII90-degree TeeBallGateButterflyCheck
90 Degree45 DegreeSide BranchStraight Run
3/80.51.51.5
1/210.522
5/81.50.522.5
3/420.533
12.514.50.54.5
11/4315.50.50.50.55.5
11/241.570.50.50.56.5
25.5290.50.50.50.57.59
21/272.5120.50.511011.5
393.515111.515.514.5
31/293.51411212.5
412.55211121618.5
5166271.51.5311.523.5
619734223.513.526.5
829115033512.539

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.01745 rad.

  1. Allowances are for streamlined soldered fittings and recessed threaded fittings. For threaded fittings, double the allowances shown in the table. The equivalent lengths presented in the table are based on a C factor of 150 in the Hazen-Williams friction loss formula. The lengths shown are rounded to the nearest half-foot.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to fairly rough pipe and to actual diameters, which, in general, will be less than the actual diameters of the new pipe of the same kind.

FIGURE AP103.3(6)

FRICTION LOSS IN FAIRLY ROUGH PIPEa

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa, 1 foot per second = 0.305 m/s.

  1. This figure applies to very rough pipe and existing pipe, and to their actual diameters.

FIGURE AP103.3(7)

FRICTION LOSS IN ROUGH PIPEa



TABLE AP.1
COLD WATER PIPE
SECTION
FITTINGS/VALVES PRESSURE LOSS
EXPRESSED AS
EQUIVALENT LENGTH
OF TUBE (feet)
HOT WATER PIPE
SECTION
FITTINGS/VALVES PRESSURE LOSS
EXPRESSED AS
EQUIVALENT OF TUBE
(feet)
A-B 3 — 21/2" Gate valves 3 A-B 3 — 21/2" Gate valves 3
1 — 21/2" Side branch tee 12 1 — 21/2" Side branch tee 12
B-C 1 — 21/2" Straight run tee 0.5 B-C 1 — 2" Straight run tee 7
1 — 2" 90-degree ell 0.5
C-F 1 — 21/2" Side branch tee 12 C-F 1 — 11/2" Side branch tee 7
C-D 1 — 21/2" 90-degree ell 7 C-D 1 — 1/2" 90-degree ell 4
D-E 1 — 21/2" Side branch tee 12 D-E 1 — 11/2" Side branch tee 7
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.01745 rad.


TABLE AP.2
PIPE SECTIONS FRICTION LOSS EQUIVALENT LENGTH (feet)
Cold Water Hot Water
A-B 0.69 × 3.2 = 2.21 0.69 × 3.2 = 2.21
B-C 0.085 × 3.1 = 0.26 0.16 × 1.4 = 0.22
C-D 0.20 × 1.9 = 0.38 0.17 × 3.2 = 0.54
D-E 1.62 × 1.9 = 3.08 1.57 × 3.2 = 5.02
Total pipe friction losses (Line K) 5.93 7.99
For SI: 1 foot = 304.8 mm.

The minimum size water service pipe shall be 3/4 inch (19.1 mm). The size of water service mains, branch mains and risers shall be determined according to water supply demand [gpm (L/m)], available water pressure [psi (kPa)] and friction loss caused by the water meter and developed length of pipe [feet (m)], including the equivalent length of fittings. The size of each water distribution system shall be determined according to the procedure outlined in this section or by other design methods conforming to acceptable engineering practice and approved by the building official:

  1. Supply load in the building water distribution system shall be determined by the total load on the pipe being sized, in terms of w.s.f.u., as shown in Table AP103.3(2). For fixtures not listed, choose a w.s.f.u. value of a fixture with similar flow characteristics.
  2. Obtain the minimum daily static service pressure [psi (kPa)] available (as determined by the local water authority) at the water meter or other source of supply at the installation location. Adjust this minimum daily static pressure [psi (kPa)] for the following conditions:

    1. 2.1. Determine the difference in elevation between the source of supply and the highest water supply outlet. Where the highest water supply outlet is located above the source of supply, deduct 0.5 psi (3.4 kPa) for each foot (0.3 m) of difference in elevation. Where the highest water supply outlet is located below the source of supply, add 0.5 psi (3.4 kPa) for each foot (0.3 m) of difference in elevation.
    2. 2.2. Where a water pressure-reducing valve is installed in the water distribution system, the minimum daily static water pressure available is 80 percent of the minimum daily static water pressure at the source of supply or the set pressure downstream of the water pressure-reducing valve, whichever is smaller.
    3. 2.3. Deduct all pressure losses caused by special equipment, such as a backflow preventer, water filter and water softener. Pressure loss data for each piece of equipment shall be obtained through the manufacturer of the device.
    4. 2.4. Deduct the pressure in excess of 8 psi (55 kPa) resulting from the installation of the special plumbing fixture, such as temperature-controlled shower and flushometer tank water closet. Using the resulting minimum available pressure, find the corresponding pressure range in Table AP201.1.
  3. The maximum developed length for water piping is the actual length of pipe between the source of supply and the most remote fixture, including either hot (through the water heater) or cold water branches multiplied by a factor of 1.2 to compensate for pressure loss through fittings. Select the appropriate column in Table AP201.1 equal to or greater than the calculated maximum developed length.
  4. To determine the size of the water service pipe, meter and main distribution pipe to the building using the appropriate table, follow down the selected "maximum developed length" column to a fixture unit equal to or greater than the total installation demand calculated by using the "combined" w.s.f.u. column of Table AP201.1. Read the water service pipe and meter sizes in the first left-hand column and the main distribution pipe to the building in the second left-hand column on the same row.
  5. To determine the size of each water distribution pipe, start at the most remote outlet on each branch (either hot or cold branch) and, working back toward the main distribution pipe to the building, add up the w.s.f.u. demand passing through each segment of the distribution system using the related hot or cold column of Table AP201.1. Knowing demand, the size of each segment shall be read from the second left-hand column of the same table and the maximum developed length column selected in Steps 1 and 2, under the same or next smaller size meter row. The size of any branch or main need never be larger than the size of the main distribution pipe to the building established in Step 4.

TABLE AP201.1

MINIMUM SIZE OF WATER METERS, MAINS AND DISTRIBUTION PIPING BASED ON WATER SUPPLY FIXTURE UNIT VALUES (w.s.f.u.)

METER AND SERVICE PIPE
(inches)
DISTRIBUTION PIPE
(inches)
MAXIMUM DEVELOPMENT LENGTH (feet)
Pressure Range 30 to 39 psi406080100150200250300400500
3/41/2a2.521.51.5110.50.500
3/43/49.57.565.543.532.521.5
3/4132252016.51197.86.55.54.5
113232272113.510875.55
3/411/432323232302420171310.5
111/480807061453427221612
11/211/4808080755440312517.513
111/287878787847364564536
11/211/21511511511511179279695443
211/21511511511511289983725645
1287878787878787878786
11/22275275275275258223196174144122
22365365365365318266229201160134
221/2533533533533533495448409353311
METER AND SERVICE PIPE
(inches)
DISTRIBUTION PIPE
(inches)
MAXIMUM DEVELOPMENT LENGTH (feet)
Pressure Range 40 to 49 psi406080100150200250300400500
3/41/2a32.521.51.5110.50.50.5
3/43/49.59.58.575.54.53.532.52
3/41323232261813.510.597.56
1132323232211511.59.57.56.5
3/411/432323232323232272116.5
111/480808080655242352620
11/211/480808080755948392821
111/287878787878787786555
11/211/2151151151151151130109937563
211/2151151151151151139115987764
1287878787878787878787
11/22275275275275275275264238198169
22365365365365365349304270220185
221/2533533533533533533533528456403
METER AND SERVICE PIPE
(inches)
DISTRIBUTION PIPE
(inches)
MAXIMUM DEVELOPMENT LENGTH (feet)
Pressure Range 50 to 60 psi406080100150200250300400500
3/41/2a332.521.51110.50.5
3/43/49.59.59.58.56.554.5432.5
3/41323232322518.514.5129.58
1132323232302216.513108
3/411/432323232323232322924
111/480808080806857483528
11/211/480808080807563533929
111/287878787878787878270
11/211/21511511511511511511391209479
211/21511511511511511511461269781
1287878787878787878787
11/22275275275275275275275275247213
22365365365365365365365329272232
221/2533533533533533533533533533486
METER AND SERVICE PIPE
(inches)
DISTRIBUTION PIPE
(inches)
MAXIMUM DEVELOPMENT LENGTH (feet)
Pressure Range Over 60406080100150200250300400500
3/41/2a3332.521.51.5110.5
3/43/49.59.59.59.57.5654.53.53
3/4132323232322419.515.511.59.5
113232323232282817129.5
3/411/432323232323232323230
111/480808080808069604636
11/211/480808080808076655038
111/287878787878787878784
11/211/215115115115115115115114411494
211/215115115115115115115115111897
1287878787878787878787
11/22275275275275275275275275275252
22365368368368368368368368318273
221/2533533533533533533533533533533

For SI: 1 inch = 25.4, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa.

  1. Minimum size for building supply is a 3/4-inch pipe.
Analyzing code differences
UpCodes Premium
Leverage the most sophisticated code compliance platform.
TRY FREE FOR TWO WEEKS VISIT PRICING