Subpart A General

Subpart B Adoption and Extension of Established Federal Standards

Subpart C Adoption and Extension of Established Federal Standards

Subpart D Walking-Working Surfaces

Subpart E Means of Egress

Subpart F Powered Platforms, Manlifts, and Vehicle-Mounted Work Platforms

Subpart G Occupational Health and Environmental Control

Subpart H Hazardous Materials

Subpart I Personal Protective Equipment

Subpart J General Environmental Controls

Subpart K Medical and First Aid

Subpart L Fire Protection

Subpart M Compressed Gas and Compressed Air Equipment

Subpart N Materials Handling and Storage

Subpart O Machinery and Machine Guarding

Subpart P Hand and Portable Powered Tools and Other Hand-Held Equipment

Subpart Q Welding, Cutting, and Brazing

Subpart R Special Industries

Subpart S Electrical

Subpart T Commercial Diving Operations

Subpart U [Reserved]

Subpart V [Reserved]

Subpart W Program Standard

Subpart X [Reserved]

Subpart Y [Reserved]

Subpart Z Toxic and Hazardous Substances

Authority: 29 U.S.C. 653, 655, 657; Secretary of Labor's Order No. 8-76 (41 FR 25059), 1-90 (55 FR 9033), 5-2002 (67 FR 65008), 5-2007 (72 FR 31160), or 1-2012 (77 FR 3912), as applicable; and 29 CFR part 1911.

[55 FR 32015, Aug. 6, 1990; 55 FR 46054, Nov. 1, 1990; 59 FR 4475, Jan. 31, 1994; 71 FR 7190, Feb. 14, 2007; 73 FR 64205, Oct. 29, 2008; 79 FR 20692, July 10, 2014; 80 FR 60039, October 5, 2015]
This subpart addresses electrical safety requirements that are necessary for the practical safeguarding of employees in their workplaces and is divided into four major divisions as follows:
These regulations are contained in 1910.302 through 1910.330. Sections 1910.302 through 1910.308 contain design safety standards for electric utilization systems. Included in this category are all electric equipment and installations used to provide electric power and light for employee workplaces. Sections 1910.309 through 1910.330 are reserved for possible future design safety standards for other electrical systems.
These regulations will be contained in 1910.331 through 1910.360.
These regulations will be contained in 1910.361 through 1910.380.
These regulations will be contained in 1910.381 through 1910.398.
Definitions applicable to each division are contained in 1910.399.

[46 FR 4056, Jan. 16, 1982; 46 FR 40185, Aug. 7, 1981]
Sections 1910.302 through 1910.308 contain design safety standards for electric utilization systems.
The provisions of §§ 1910.302 through 1910.308 cover electrical installations and utilization equipment installed or used within or on buildings, structures, and other premises, including:
Conductors that connect the installations to a supply of electricity; and
The provisions of §§ 1910.302 through 1910.308 do not cover:
Installations in ships, watercraft, railway rolling stock, aircraft, or automotive vehicles other than mobile homes and recreational vehicles;
Installations of railways for generation, transformation, transmission, or distribution of power used exclusively for operation of rolling stock or installations used exclusively for signaling and communication purposes;
Installations of communication equipment under the exclusive control of communication utilities, located outdoors or in building spaces used exclusively for such installations; or.
Installations under the exclusive control of electric utilities for the purpose of communication or metering; or for the generation, control, transformation, transmission, and distribution of electric energy located in buildings used exclusively by utilities for such purposes or located outdoors on property owned or leased by the utility or on public highways, streets, roads, etc., or outdoors by established rights on private property.
The following requirements apply to all electrical installations and utilization equipment, regardless of when they were designed or installed:

§ 1910.303(b) -- Examination, installation, and use of equipment
§ 1910.303(c)(3) -- Electrical connections -- Splices
§ 1910.303(d) -- Arcing parts
§ 1910.303(e) -- Marking
§ 1910.303(f), except (f)(4) and (f)(5) -- Disconnecting means and circuits
§ 1910.303(g)(2) -- 600 volts or less -- Guarding of live parts
§ 1910.304(a)(3) -- Use of grounding terminals and devices
§ 1910.304(f)(1)(i), (f)(1)(iv), and (f)(1)(v) -- Overcurrent protection -- 600 volts, nominal, or less
§ 1910.304(g)(1)(ii), (g)(1)(iii), (g)(1)(iv), and (g)(1)(v) -- Grounding -- Systems to be grounded
§ 1910.304(g)(4) -- Grounding -- Grounding connections
§ 1910.304(g)(5) -- Grounding -- Grounding path
§ 1910.304(g)(6)(iv)(A) through (g)(6)(iv)(D), and (g)(6)(vi) -- Grounding -- Supports, enclosures, and equipment to be grounded
§ 1910.304(g)(7) -- Grounding -- Nonelectrical equipment
§ 1910.304(g)(8)(i) -- Grounding -- Methods of grounding fixed equipment
§ 1910.305(g)(1) -- Flexible cords and cables--Use of flexible cords and cables
§ 1910.305(g)(2)(ii) and (g)(2)(iii) -- Flexible cords and cables -- Identification, splices, and terminations
§ 1910.307, except as specified in § 1910.307(b) -- Hazardous (classified) locations
Every electrical installation and all utilization equipment installed or overhauled after March 15, 1972, shall comply with the provisions of §§ 1910.302 through 1910.308, except as noted in paragraphs (b)(3) and (b)(4) of this section.
The following requirements apply only to electrical installations and utilization equipment installed after April 16, 1981:

§ 1910.303(h)(4) -- Over 600 volts, nominal -- Entrance and access to work space
§ 1910.304(f)(1)(vii) and (f)(1)(viii) -- Overcurrent protection -- 600 volts, nominal, or less
§ 1910.304(g)(9)(i) -- Grounding -- Grounding of systems and circuits of 1000 volts and over (high voltage)
§ 1910.305(j)(6)(ii)(D) -- Equipment for general use -- Capacitors
§ 1910.306(c)(9) -- Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts -- Interconnection between multicar controllers
§ 1910.306(i) -- Electrically driven or controlled irrigation machines
§ 1910.306(j)(5) -- Swimming pools, fountains, and similar installations -- Fountains
§ 1910.308(a)(1)(ii) -- Systems over 600 volts, nominal -- Aboveground wiring methods
§ 1910.308(c)(2) -- Class 1, Class 2, and Class 3 remote control, signaling, and power-limited circuits -- Marking
§ 1910.308(d) -- Fire alarm systems
The following requirements apply only to electrical installations and utilization equipment installed after August 13, 2007:

§ 1910.303(f)(4) -- Disconnecting means and circuits -- Capable of accepting a lock
§ 1910.303(f)(5) -- Disconnecting means and circuits -- Marking for series combination ratings
§ 1910.303(g)(1)(iv) and (g)(1)(vii) -- 600 Volts, nominal, or less -- Space about electric equipment
§ 1910.303(h)(5)(vi) -- Over 600 volts, nominal -- Working space and guarding
§ 1910.304(b)(1) -- Branch circuits -- Identification of multiwire branch circuits
§ 1910.304(b)(3)(i) -- Branch circuits -- Ground-fault circuit interrupter protection for personnel
§ 1910.304(f)(2)(i)(A), (f)(2)(i)(B) (but not the introductory text to § 1910.304(f)(2)(i)), and (f)(2)(iv)(A) -- Overcurrent protection -- Feeders and branch circuits over 600 volts, nominal
§ 1910.305(c)(3)(ii) -- Switches -- Connection of switches
§ 1910.305(c)(5) -- Switches -- Grounding
§ 1910.306(a)(1)(ii) -- Electric signs and outline lighting -- Disconnecting means
§ 1910.306(c)(4) -- Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts -- Operation
§ 1910.306(c)(5) -- Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts -- Location
§ 1910.306(c)(6) -- Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts -- Identification and signs
§ 1910.306(c)(7) -- Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts -- Single-car and multicar installations
§ 1910.306(j)(1)(iii) -- Swimming pools, fountains, and similar installations -- Receptacles
§ 1910.306(k) -- Carnivals, circuses, fairs, and similar events
§ 1910.308(a)(5)(v) and (a)(5)(vi)(B) -- Systems over 600 volts, nominal -- Interrupting and isolating devices
§ 1910.308(a)(7)(vi) -- Systems over 600 volts, nominal -- Tunnel installations
§ 1910.308(b)(3) -- Emergency power systems -- Signs
§ 1910.308(c)(3) -- Class 1, Class 2, and Class 3 remote control, signaling, and power-limited circuits -- Separation from conductors of other circuits
§ 1910.308(f) -- Solar photovoltaic systems
The requirement in § 1910.147(c)(2)(iii) that energy isolating devices be capable of accepting a lockout device whenever replacement or major repair, renovation or modification of a machine or equipment is performed, and whenever new machines or equipment are installed after January 2, 1990, applies in addition to any requirements in § 1910.303 through § 1910.308 that disconnecting means be capable of being locked in the open position under certain conditions.

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981; 72 FR 7190, Feb. 14, 2007]
The conductors and equipment required or permitted by this subpart shall be acceptable only if approved, as defined in Sec. 1910.399.
Electric equipment shall be free from recognized hazards that are likely to cause death or serious physical harm to employees. Safety of equipment shall be determined using the following considerations:
Suitability for installation and use in conformity with the provisions of this subpart;

Note to paragraph (b)(1)(i) of this section: Suitability of equipment for an identified purpose may be evidenced by listing or labeling for that identified purpose.
Classification by type, size, voltage, current capacity, and specific use; and
Other factors that contribute to the practical safeguarding of persons using or likely to come in contact with the equipment.
Mechanical strength and durability, including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus provided;
Listed or labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling.
Completed wiring installations shall be free from short circuits and from grounds other than those required or permitted by this subpart.
Equipment intended to interrupt current at fault levels shall have an interrupting rating sufficient for the nominal circuit voltage and the current that is available at the line terminals of the equipment. Equipment intended to interrupt current at other than fault levels shall have an interrupting rating at nominal circuit voltage sufficient for the current that must be interrupted.
The overcurrent protective devices, the total impedance, the component short-circuit current ratings, and other characteristics of the circuit to be protected shall be selected and coordinated to permit the circuit protective devices used to clear a fault to do so without the occurrence of extensive damage to the electrical components of the circuit. This fault shall be assumed to be either between two or more of the circuit conductors, or between any circuit conductor and the grounding conductor or enclosing metal raceway.
Unless identified for use in the operating environment, no conductors or equipment shall be located in damp or wet locations; where exposed to gases, fumes, vapors, liquids, or other agents that have a deteriorating effect on the conductors or equipment; or where exposed to excessive temperatures.
Electric equipment shall be installed in a neat and workmanlike manner.
Unused openings in boxes, raceways, auxiliary gutters, cabinets, equipment cases, or housings shall be effectively closed to afford protection substantially equivalent to the wall of the equipment.
Internal parts of electrical equipment, including busbars, wiring terminals, insulators, and other surfaces, may not be damaged or contaminated by foreign materials such as paint, plaster, cleaners, abrasives, or corrosive residues.
There shall be no damaged parts that may adversely affect safe operation or mechanical strength of the equipment, such as parts that are broken, bent, cut, or deteriorated by corrosion, chemical action, or overheating.
Conductors shall be racked to provide ready and safe access in underground and subsurface enclosures that persons enter for installation and maintenance.
Electric equipment shall be firmly secured to the surface on which it is mounted.

Note to paragraph (b)(8)(i) of this section: Wooden plugs driven into holes in masonry, concrete, plaster, or similar materials are not considered secure means of fastening electric equipment.
Electric equipment provided with ventilating openings shall be installed so that walls or other obstructions do not prevent the free circulation of air through the equipment.
Electric equipment that depends on the natural circulation of air and convection principles for cooling of exposed surfaces shall be installed so that room airflow over such surfaces is not prevented by walls or by adjacent installed equipment. For equipment designed for floor mounting, clearance between top surfaces and adjacent surfaces shall be provided to dissipate rising warm air.
Because of different characteristics of dissimilar metals:
Devices such as pressure terminal or pressure splicing connectors and soldering lugs shall be identified for the material of the conductor and shall be properly installed and used;
Materials such as solder, fluxes, inhibitors, and compounds, where employed, shall be suitable for the use and shall be of a type that will not adversely affect the conductors, installation, or equipment.
Conductors of dissimilar metals may not be intermixed in a terminal or splicing connector where physical contact occurs between dissimilar conductors (such as copper and aluminum, copper and copper-clad aluminum, or aluminum and copper-clad aluminum) unless the device is identified for the purpose and conditions of use; and
Connection of conductors to terminal parts shall ensure a good connection without damaging the conductors and shall be made by means of pressure connectors (including set-screw type), solder lugs, or splices to flexible leads. However, No. 10 or smaller conductors may be connected by means of wire binding screws or studs and nuts having upturned lugs or equivalent.
Terminals for more than one conductor and terminals used to connect aluminum shall be so identified.
Conductors shall be spliced or joined with splicing devices identified for the use or by brazing, welding, or soldering with a fusible metal or alloy. Soldered splices shall first be spliced or joined to be mechanically and electrically secure without solder and then soldered. All splices and joints and the free ends of conductors shall be covered with an insulation equivalent to that of the conductors or with an insulating device identified for the purpose.
Wire connectors or splicing means installed on conductors for direct burial shall be listed for such use.
Parts of electric equipment that in ordinary operation produce arcs, sparks, flames, or molten metal shall be enclosed or separated and isolated from all combustible material.
Electric equipment may not be used unless the following markings have been placed on the equipment:
The manufacturer's name, trademark, or other descriptive marking by which the organization responsible for the product may be identified; and
Other markings giving voltage, current, wattage, or other ratings as necessary.
The marking shall be of sufficient durability to withstand the environment involved.
Each disconnecting means required by this subpart for motors and appliances shall be legibly marked to indicate its purpose, unless located and arranged so the purpose is evident.
Each service, feeder, and branch circuit, at its disconnecting means or overcurrent device, shall be legibly marked to indicate its purpose, unless located and arranged so the purpose is evident.
The markings required by paragraphs (f)(1) and (f)(2) of this section shall be of sufficient durability to withstand the environment involved.
Disconnecting means required by this subpart shall be capable of being locked in the open position.
Where circuit breakers or fuses are applied in compliance with the series combination ratings marked on the equipment by the manufacturer, the equipment enclosures shall be legibly marked in the field to indicate that the equipment has been applied with a series combination rating.
The marking required by paragraph (f)(5)(i) of this section shall be readily visible and shall state "Caution -- Series Combination System Rated_____Amperes. Identified Replacement Component Required."
This paragraph applies to electric equipment operating at 600 volts, nominal, or less to ground.
Sufficient access and working space shall be provided and maintained about all electric equipment to permit ready and safe operation and maintenance of such equipment.
Working space for equipment likely to require examination, adjustment, servicing, or maintenance while energized shall comply with the following dimensions, except as required or permitted elsewhere in this subpart:
The depth of the working space in the direction of access to live parts may not be less than indicated in Table S-1. Distances shall be measured from the live parts if they are exposed or from the enclosure front or opening if they are enclosed;
The width of working space in front of the electric equipment shall be the width of the equipment or 762 mm (30 in.), whichever is greater. In all cases, the working space shall permit at least a 90-degree opening of equipment doors or hinged panels; and
The work space shall be clear and extend from the grade, floor, or platform to the height required by paragraph (g)(1)(vi) of this section. However, other equipment associated with the electrical installation and located above or below the electric equipment may extend not more than 153 mm (6 in.) beyond the front of the electric equipment.
At least one entrance of sufficient area shall be provided to give access to the working space about electric equipment.
For equipment rated 1200 amperes or more and over 1.83 m (6.0 ft) wide, containing overcurrent devices, switching devices, or control devices, there shall be one entrance not less than 610 mm (24 in.) wide and 1.98 m (6.5 ft) high at each end of the working space, except that:
Where the location permits a continuous and unobstructed way of exit travel, one means of exit is permitted; or
Where the working space required by paragraph (g)(1)(i) of this section is doubled, only one entrance to the working space is required; however, the entrance shall be located so that the edge of the entrance nearest the equipment is the minimum clear distance given in Table S-1 away from such equipment.
Illumination shall be provided for all working spaces about service equipment, switchboards, panelboards, and motor control centers installed indoors. Additional lighting fixtures are not required where the working space is illuminated by an adjacent light source. In electric equipment rooms, the illumination may not be controlled by automatic means only.
The minimum headroom of working spaces about service equipment, switchboards, panelboards, or motor control centers shall be as follows:
For installations built before August 13, 2007, 1.91 m (6.25 ft); and
For installations built on or after August 13, 2007, 1.98 m (6.5 ft), except that where the electrical equipment exceeds 1.98 m (6.5 ft) in height, the minimum headroom may not be less than the height of the equipment.

Table S-1 - Minimum Depth of Clear Working Space at Electric Equipment, 600 V or Less
Nominal voltage to ground Minimum clear distance for condition 23
Condition A Condition B Condition C
m ft m ft m ft
0-150 10.9 13.0 10.9 13.0 0.9 3.0
151-600 10.9 13.0
1.0
3.5 1.2 4.0


Notes to Table S-1:
  1. Minimum clear distances may be 0.7 m (2.5 ft) for installations built before April 16, 1981.
  2. Conditions A, B, and C are as follows:
    Condition A -- Exposed live parts on one side and no live or grounded parts on the other side of the working space, or exposed live parts on both sides effectively guarded by suitable wood or other insulating material. Insulated wire or insulated busbars operating at not over 300 volts are not considered live parts.
    Condition B -- Exposed live parts on one side and grounded parts on the other side.
    Condition C -- Exposed live parts on both sides of the work space (not guarded as provided in Condition A) with the operator between.
  3. Working space is not required in back of assemblies such as dead-front switchboards or motor control centers where there are no renewable or adjustable parts (such as fuses or switches) on the back and where all connections are accessible from locations other than the back. Where rear access is required to work on deenergized parts on the back of enclosed equipment, a minimum working space of 762 mm (30 in.) horizontally shall be provided.
Switchboards, panelboards, and distribution boards installed for the control of light and power circuits, and motor control centers shall be located in dedicated spaces and protected from damage.
The space equal to the width and depth of the equipment and extending from the floor to a height of 1.83 m (6.0 ft) above the equipment or to the structural ceiling, whichever is lower, shall be dedicated to the electrical installation. Unless isolated from equipment by height or physical enclosures or covers that will afford adequate mechanical protection from vehicular traffic or accidental contact by unauthorized personnel or that complies with paragraph (g)(1)(vii)(A)(2) of this section, piping, ducts, or equipment foreign to the electrical installation may not be located in this area;
The space equal to the width and depth of the equipment shall be kept clear of foreign systems unless protection is provided to avoid damage from condensation, leaks, or breaks in such foreign systems. This area shall extend from the top of the electric equipment to the structural ceiling;
Sprinkler protection is permitted for the dedicated space where the piping complies with this section; and
Control equipment that by its very nature or because of other requirements in this subpart must be adjacent to or within sight of its operating machinery is permitted in the dedicated space.

Note to paragraph (g)(1)(vii)(A) of this section: A dropped, suspended, or similar ceiling that does not add strength to the building structure is not considered a structural ceiling.
Outdoor electric equipment shall be installed in suitable enclosures and shall be protected from accidental contact by unauthorized personnel, or by vehicular traffic, or by accidental spillage or leakage from piping systems. No architectural appurtenance or other equipment may be located in the working space required by paragraph (g)(1)(i) of this section.
Working space required by this standard may not be used for storage. When normally enclosed live parts are exposed for inspection or servicing, the working space, if in a passageway or general open space, shall be suitably guarded.
Except as elsewhere required or permitted by this standard, live parts of electric equipment operating at 50 volts or more shall be guarded against accidentalcontact by use of approved cabinets or other forms of approved enclosures or by any of the following means:
By location in a room, vault, or similar enclosure that is accessible only to qualified persons;
By suitable permanent, substantial partitions or screens so arranged so that only qualified persons will have access to the space within reach of the live parts. Any openings in such partitions or screens shall be so sized and located that persons are not likely to come into accidental contact with the live parts or to bring conducting objects into contact with them;
By placement on a suitable balcony, gallery, or platform so elevated and otherwise located as to prevent access by unqualified persons; or
By elevation of 2.44 m (8.0 ft) or more above the floor or other working surface.
Entrances to rooms and other guarded locations containing exposed live parts shall be marked with conspicuous warning signs forbidding unqualified persons to enter.
In locations where electric equipment is likely to be exposed to physical damage, enclosures or guards shall be so arranged and of such strength as to prevent such damage.
Conductors and equipment used on circuits exceeding 600 volts, nominal, shall comply with all applicable provisions of the paragraphs (a) through (g) of this section and with the following provisions, which supplement or modify the preceding requirements. However, paragraphs (h)(2), (h)(3), and (h)(4) of this section do not apply to the equipment on the supply side of the service point.
Electrical installations in a vault, room, or closet or in an area surrounded by a wall, screen, or fence, access to which is controlled by lock and key or other approved means, are considered to be accessible to qualified persons only. The type of enclosure used in a given case shall be designed and constructed according to the hazards associated with the installation.
The following requirements apply to indoor installations that are accessible to other than qualified persons:
The installations shall be made with metal-enclosed equipment or shall be enclosed in a vault or in an area to which access is controlled by a lock;
Metal-enclosed switchgear, unit substations, transformers, pull boxes, connection boxes, and other similar associated equipment shall be marked with appropriate caution signs; and
Openings in ventilated dry-type transformers and similar openings in other equipment shall be designed so that foreign objects inserted through these openings will be deflected from energized parts.
Outdoor electrical installations having exposed live parts shall be accessible to qualified persons only.
The following requirements apply to outdoor enclosed equipment accessible to unqualified employees:
Ventilating or similar openings in equipment shall be so designed that foreign objects inserted through these openings will be deflected from energized parts;
Where exposed to physical damage from vehicular traffic, suitable guards shall be provided;
Nonmetallic or metal-enclosed equipment located outdoors and accessible to the general public shall be designed so that exposed nuts or bolts cannot be readily removed, permitting access to live parts;
Where nonmetallic or metal-enclosed equipment is accessible to the general public and the bottom of the enclosure is less than 2.44 m (8.0 ft) above the floor or grade level, the enclosure door or hinged cover shall be kept locked; and
Except for underground box covers that weigh over 45.4 kg (100 lb), doors and covers of enclosures used solely as pull boxes, splice boxes, or junction boxes shall be locked, bolted, or screwed on.
For installations other than equipment described in paragraph (h)(2)(v) of this section, a wall, screen, or fence shall be used to enclose an outdoor electrical installation to deter access by persons who are not qualified. A fence may not be less than 2.13 m (7.0 ft) in height or a combination of 1.80 m (6.0 ft) or more of fence fabric and a 305-mm (1-ft) or more extension utilizing three or more strands of barbed wire or equivalent.
Sufficient space shall be provided and maintained about electric equipment to permit ready and safe operation and maintenance of such equipment. Where energized parts are exposed, the minimum clear work space may not be less than 1.98 m (6.5 ft) high (measured vertically from the floor or platform) or less than 914 mm (3.0 ft) wide (measured parallel to the equipment). The depth shall be as required in paragraph (h)(5)(i) of this section. In all cases, the work space shall be adequate to permit at least a 90-degree opening of doors or hinged panels.
At least one entrance not less than 610 mm (24 in.) wide and 1.98 m (6.5 ft) high shall be provided to give access to the working space about electric equipment.
On switchboard and control panels exceeding 1.83 m (6.0 ft) in width, there shall be one entrance at each end of such boards unless the location of the switchboards and control panels permits a continuous and unobstructed way of exit travel, or unless the work space required in paragraph (h)(5)(i) of this section is doubled.
Where one entrance to the working space is permitted under the conditions described in paragraph (h)(4)(i)(A) of this section, the entrance shall be located so that the edge of the entrance nearest the switchboards and control panels is at least the minimum clear distance given in Table S-2 away from such equipment.
Where bare energized parts at any voltage or insulated energized parts above 600 volts, nominal, to ground are located adjacent to such entrance, they shall be suitably guarded.
Permanent ladders or stairways shall be provided to give safe access to the working space around electric equipment installed on platforms, balconies, mezzanine floors, or in attic or roof rooms or spaces.
(vi) Except as elsewhere required or permitted in this subpart, the minimum clear working space in the direction of access to live parts of electric equipment may not be less than specified in Table S-2. Distances shall be measured from the live parts, if they are exposed, or from the enclosure front or opening, if they are enclosed.
The following requirements apply to the entrances to all buildings, rooms, or enclosures containing exposed live parts or exposed conductors operating at over 600 volts, nominal:
The entrances shall be kept locked unless they are under the observation of a qualified person at all times; and
Permanent and conspicuous warning signs shall be provided, reading substantially as follows:

"DANGER -- HIGH VOLTAGE -- KEEP OUT."
Illumination shall be provided for all working spaces about electric equipment.
The lighting outlets shall be arranged so that persons changing lamps or making repairs on the lighting system will not be endangered by live parts or other equipment.
The points of control shall be located so that persons are prevented from contacting any live part or moving part of the equipment while turning on the lights.
Unguarded live parts above working space shall be maintained at elevations not less than specified in Table S-3.
Pipes or ducts that are foreign to the electrical installation and that require periodic maintenance or whose malfunction would endanger the operation of the electrical system may not be located in the vicinity of service equipment, metal-enclosed power switchgear, or industrial control assemblies. Protection shall be provided where necessary to avoid damage from condensation leaks and breaks in such foreign systems.

Note to paragraph (h)(5)(vi) of this section: Piping and other facilities are not considered foreign if provided for fire protection of the electrical installation.

Table S-2 - Minimum Depth of Clear Working Space at Electric Equipment, Over 600 V
Nominal voltage to ground Minimum clear distance for condition 23
Condition A Condition B Condition C
m ft m ft m ft
601-2500 V 0.9 3.0 1.2 4.0 1.5 5.0
2501-9000 V 1.2 4.0 1.5 5.0 1.8 6.0
9001 V-25 kV 1.5 5.0 1.8 6.0 2.8 9.0
Over 25-75 kV 1 1.8 6.0 2.5 8.0 3.0 10.0
Above 75 kV 1 2.5 8.0 3.0 10.0 3.7 12.0

Notes to Table S-2:
1 Minimum depth of clear working space in front of electric equipment with a nominal voltage to ground above 25,000 volts may be the same as that for 25,000 volts under Conditions A, B, and C for installations built before April 16, 1981.
2 Conditions A, B, and C are as follows:
Condition A -- Exposed live parts on one side and no live or grounded parts on the other side of the working space, or exposed live parts on both sides effectively guarded by suitable wood or other insulating material. Insulated wire or insulated busbars operating at not over 300 volts are not considered live parts.
Condition B -- Exposed live parts on one side and grounded parts on the other side. Concrete, brick, and tile walls are considered as grounded surfaces.
Condition C -- Exposed live parts on both sides of the work space (not guarded as provided in Condition A) with the operator between.
3 Working space is not required in back of equipment such as dead-front switchboards or control assemblies that has no renewable or adjustable parts (such as fuses or switches) on the back and where all connections are accessible from locations other than the back. Where rear access is required to work on the deenergized parts on the back of enclosed equipment, a minimum working space 762 mm (30 in.) horizontally shall be provided.

Table S-3. -- Elevation of Unguarded Live Parts Above Working Space
Nominal voltage between phases Elevation
m ft
601-7500 V 1 2.8 1 9.0
7501 V-35 kV 2. 9.0
Over 35 kV 2.8 + 9.5 mm/kV over 35 kV 9.0 + 0.37 in./kV over 35 kV

1The minimum elevation may be 2.6 m (8.5 ft) for installations built before August 13, 2007. The minimum elevation may be 2.4 m (8.0 ft) for installations built before April 16, 1981, if the nominal voltage between phases is in the range of 601-6600 volts.

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981; 72 FR 7191, Feb. 14, 2007, 73 FR 64205, Oct. 29, 2008]
If switches, cutouts, or other equipment operating at 600 volts, nominal, or less, are installed in a room or enclosure where there are exposed live parts or exposed wiring operating at over 600 volts, nominal, the high-voltage equipment shall be effectively separated from the space occupied by the low-voltage equipment by a suitable partition, fence, or screen. However, switches or other equipment operating at 600 volts, nominal, or less, and serving only equipment within the high-voltage vault, room, or enclosure may be installed in the high-voltage enclosure, room, or vault if accessible to qualified persons only.
A conductor used as a grounded conductor shall be identifiable and distinguishable from all other conductors.
A conductor used as an equipment grounding conductor shall be identifiable and distinguishable from all other conductors.
No grounded conductor may be attached to any terminal or lead so as to reverse designated polarity.
A grounding terminal or grounding-type device on a receptacle, cord connector, or attachment plug may not be used for purposes other than grounding.
Where more than one nominal voltage system exists in a building containing multiwire branch circuits, each ungrounded conductor of a multiwire branch circuit, where accessible, shall be identified by phase and system. The means of identification shall be permanently posted at each branch-circuit panelboard.
Receptacles installed on 15- and 20-ampere branch circuits shall be of the grounding type except as permitted for replacement receptacles in paragraph (b)(2)(iv) of this section. Grounding-type receptacles shall be installed only on circuits of the voltage class and current for which they are rated, except as provided in Table S-4 and Table S-5.

Table S-4 - Maximum Cord- and Plug-Connected Load to Receptacle
Circuit rating
(amperes)
Receptacle rating
(amperes)
Maximum load
(amperes)
15 or 20 15 12
20 20 16
30 30 24


Table S-5 - Receptacle Ratings for Various Size Circuits
Circuit rating
(amperes)
Receptacle rating
(amperes)
15 Not over 15
20 15 or 20
30 30
40 40 or 50
50 50
The grounding contacts of receptacles and cord connectors shall be grounded by connection to the equipment grounding conductor of the circuit supplying the receptacle or cord connector. The branch circuit wiring method shall include or provide an equipment grounding conductor to which the grounding contacts of the receptacle or cord connector shall be connected.
Where a grounding means exists in the receptacle enclosure or a grounding conductor is installed, grounding-type receptacles shall be used and shall be connected to the grounding means or conductor;
Ground-fault circuit-interrupter protected receptacles shall be provided where replacements are made at receptacle outlets that are required to be so protected elsewhere in this subpart; and
Where a grounding means does not exist in the receptacle enclosure, the installation shall comply with one of the following provisions:
A nongrounding-type receptacle may be replaced with another nongrounding-type receptacle; or
A nongrounding-type receptacle may be replaced with a ground-fault circuit-interrupter-type of receptacle that is marked "No Equipment Ground;" an equipment grounding conductor may not be connected from the ground-fault circuit-interrupter-type receptacle to any outlet supplied from the ground-fault circuit-interrupter receptacle; or
A nongrounding-type receptacle may be replaced with a grounding-type receptacle where supplied through a ground-fault circuit-interrupter; the replacement receptacle shall be marked "GFCI Protected" and "No Equipment Ground;" an equipment grounding conductor may not be connected to such grounding-type receptacles.
Receptacles connected to circuits having different voltages, frequencies, or types of current (ac or dc) on the same premises shall be of such design that the attachment plugs used on these circuits are not interchangeable.
Receptacles and cord connectors having grounding contacts shall have those contacts effectively grounded except for receptacles mounted on portable and vehicle-mounted generators in accordance with paragraph (g)(3) of this section and replacement receptacles installed in accordance with paragraph (b)(2)(iv) of this section.
All 125-volt, single-phase, 15- and 20-ampere receptacles installed in bathrooms or on rooftops shall have ground-fault circuit-interrupter protection for personnel.
The following requirements apply to temporary wiring installations that are used during construction-like activities, including certain maintenance, remodeling, or repair activities, involving buildings, structures or equipment.
All 125-volt, single-phase, 15-, 20-, and 30-ampere receptacle outlets that are not part of the permanent wiring of the building or structure and that are in use by personnel shall have ground-fault circuit-interrupter protection for personnel.

Note 1 to paragraph (b)(3)(ii)(A) of this section: A cord connector on an extension cord set is considered to be a receptacle outlet if the cord set is used for temporary electric power.

Note 2 to paragraph (b)(3)(ii)(A) of this section: Cord sets and devices incorporating the required ground-fault circuit-interrupter that are connected to the receptacle closest to the source of power are acceptable forms of protection.
Receptacles other than 125 volt, single-phase, 15-, 20-, and 30-ampere receptacles that are not part of the permanent wiring of the building or structure and that are in use by personnel shall have ground-fault circuit-interrupter protection for personnel.
Where the ground-fault circuit-interrupter protection required by paragraph (b)(3)(ii)(B) of this section is not available for receptacles other than 125-volt, single-phase, 15-, 20-, and 30-ampere, the employer shall establish and implement an assured equipment grounding conductor program covering cord sets, receptacles that are not a part of the building or structure, and equipment connected by cord and plug that are available for use or used by employees on those receptacles. This program shall comply with the following requirements:
A written description of the program, including the specific procedures adopted by the employer, shall be available at the jobsite for inspection and copying by the Assistant Secretary of Labor and any affected employee;
The employer shall designate one or more competent persons to implement the program;
Each cord set, attachment cap, plug, and receptacle of cord sets, and any equipment connected by cord and plug, except cord sets and receptacles which are fixed and not exposed to damage, shall be visually inspected before each day's use for external defects, such as deformed or missing pins or insulation damage, and for indications of possible internal damage. Equipment found damaged or defective shall not be used until repaired;
The following tests shall be performed on all cord sets and receptacles which are not a part of the permanent wiring of the building or structure, and cord- and plug-connected equipment required to be grounded:
All equipment grounding conductors shall be tested for continuity and shall be electrically continuous;
All required tests shall be performed before first use; before equipment is returned to service following any repairs; before equipment is used after any incident which can be reasonably suspected to have caused damage (for example, when a cord set is run over); and at intervals not to exceed 3 months, except that cord sets and receptacles which are fixed and not exposed to damage shall be tested at intervals not exceeding 6 months;
Each receptacle and attachment cap or plug shall be tested for correct attachment of the equipment grounding conductor. The equipment grounding conductor shall be connected to its proper terminal; and
The employer shall not make available or permit the use by employees of any equipment which has not met the requirements of paragraph (b)(3)(ii)(C) of this section; and
Tests performed as required in paragraph (b)(3)(ii)(C) of this section shall be recorded. This test record shall identify each receptacle, cord set, and cord- and plug-connected equipment that passed the test and shall indicate the last date it was tested or the interval for which it was tested. This record shall be kept by means of logs, color coding, or other effective means and shall be maintained until replaced by a more current record. The record shall be made available on the jobsite for inspection by the Assistant Secretary and any affected employee.
Outlet devices shall have an ampere rating not less than the load to be served and shall comply with the following provisions:
Where connected to a branch circuit having a rating in excess of 20 amperes, lampholders shall be of the heavy-duty type. A heavy-duty lampholder shall have a rating of not less than 660 watts if of the admedium type and not less than 750 watts if of any other type; and
A single receptacle installed on an individual branch circuit shall have an ampere rating of not less than that of the branch circuit;
Where connected to a branch circuit supplying two or more receptacles or outlets, a receptacle may not supply a total cord- and plug-connected load in excess of the maximum specified in Table S-4; and
Where connected to a branch circuit supplying two or more receptacles or outlets, receptacle ratings shall conform to the values listed in Table S-5; or, where larger than 50 amperes, the receptacle rating may not be less than the branch-circuit rating. However, receptacles of cord- and plug-connected arc welders may have ampere ratings not less than the minimum branch-circuit conductor ampacity.
A receptacle outlet shall be installed wherever flexible cords with attachment plugs are used. Where flexible cords are permitted to be permanently connected, receptacles may be omitted.
The following requirements apply to branch-circuit, feeder, and service conductors rated 600 volts, nominal, or less and run outdoors as open conductors.
Conductors on poles shall have a separation of not less than 305 mm (1.0 ft) where not placed on racks or brackets. Conductors supported on poles shall provide a horizontal climbing space not less than the following:
Power conductors below communication conductors -- 762 mm (30 in.);
Communication conductors below power conductors -- same as power conductors; and
Communications conductors alone -- no requirement.
Power conductors alone or above communication conductors:
Open conductors, open multiconductor cables, and service-drop conductors of not over 600 volts, nominal, shall conform to the minimum clearances specified in Table S-6.

Table S-6. -- Clearances From Ground
Distance Installations built before August 13, 2007 Installations built on or after August 13, 2007
Maximum voltage Conditions Voltage to ground Conditions
3.05 m
(10.0 ft)
< 600 V Above finished grade or sidewalks, or from any platform or projection from which they might be reached. (If these areas are accessible to other than pedestrian traffic, then one of the other conditions applies). < 150 V Above finished grade or sidewalks, or from any platform or projection from which they might be reached. (If these areas are accessible to other than pedestrian traffic, then one of the other conditions applies.)
3.66 m
(12.0 ft)
< 600 V Over areas, other than public streets, alleys, roads, and driveways, subject to vehicular traffic other than truck traffic. < 300 V Over residential property and driveways. Over commercial areas subject to pedestrian traffic or to vehicular traffic other than truck traffic. (This category includes conditions covered under the 3.05-m (10.0-ft) category where the voltage exceeds 150 V.)
4.57 m
(15.0 ft)
< 600 V Over areas, other than public streets, alleys, roads, and driveways, subject to truck traffic. 301 to 600 V Over residential property and driveways. Over commercial areas subject to pedestrian traffic or to vehicular traffic other than truck traffic. (This category includes conditions covered under the 3.05-m (10.0-ft) category where the voltage exceeds 300 V.)
5.49 m
(18.0 ft)
< 600 V Over public streets, alleys, roads, and driveways. < 600 V Over public streets, alleys, roads, and driveways. Over commercial areas subject to truck traffic. Other land traversed by vehicles, including land used for cultivating or grazing and forests and orchards.
Service conductors installed as open conductors or multiconductor cable without an overall outer jacket shall have a clearance of not less than 914 mm (3.0 ft) from windows that are designed to be opened, doors, porches, balconies, ladders, stairs, fire escapes, and similar locations. However, conductors that run above the top level of a window may be less than 914 mm (3.0 ft) from the window. Vertical clearance of final spans above, or within 914 mm (3.0 ft) measured horizontally of, platforms, projections, or surfaces from which they might be reached shall be maintained in accordance with paragraph (c)(2) of this section.
Overhead service conductors may not be installed beneath openings through which materials may be moved, such as openings in farm and commercial buildings, and may not be installed where they will obstruct entrance to these building openings.
Overhead spans of open conductors and open multiconductor cables shall have a vertical clearance of not less than 2.44 m (8.0 ft) above the roof surface. The vertical clearance above the roof level shall be maintained for a distance not less than 914 mm (3.0 ft) in all directions from the edge of the roof.
The area above a roof surface subject to pedestrian or vehicular traffic shall have a vertical clearance from the roof surface in accordance with the clearance requirements of paragraph (c)(2) of this section.
A reduction in clearance above only the overhanging portion of the roof to not less than 457 mm (18 in.) is permitted where the voltage between conductors does not exceed 300 if:
The conductors do not pass above the roof overhang for a distance of more than 1.83 m (6.0 ft), 1.22 m (4.0 ft) horizontally, and
The conductors are terminated at a through-the-roof raceway or approved support.
The requirement for maintaining a vertical clearance of 914 mm (3.0 ft) from the edge of the roof does not apply to the final conductor span, where the conductors are attached to the side of a building.
A reduction in clearance to 914 mm (3.0 ft) is permitted where the voltage between conductors does not exceed 300 and the roof has a slope of 102 mm (4 in.) in 305 mm (12 in.) or greater.
Lamps for outdoor lighting shall be located below all energized conductors, transformers, or other electric equipment, unless such equipment is controlled by a disconnecting means that can be locked in the open position, or unless adequate clearances or other safeguards are provided for relamping operations.
Means shall be provided to disconnect all conductors in a building or other structure from the service-entrance conductors. The service disconnecting means shall plainly indicate whether it is in the open or closed position and shall be installed at a readily accessible location nearest the point of entrance of the service-entrance conductors.
Each service disconnecting means shall be suitable for the prevailing conditions.
Each service disconnecting means shall simultaneously disconnect all ungrounded conductors.
The following additional requirements apply to services over 600 volts, nominal.
Service-entrance conductors installed as open wires shall be guarded to make them accessible only to qualified persons.
Signs warning of high voltage shall be posted where unqualified employees might come in contact with live parts.
The following requirements apply to overcurrent protection of circuits rated 600 volts, nominal, or less.
Conductors and equipment shall be protected from overcurrent in accordance with their ability to safely conduct current.
A disconnecting means shall be provided on the supply side of all fuses in circuits over 150 volts to ground and cartridge fuses in circuits of any voltage where accessible to other than qualified persons so that each individual circuit containing fuses can be independently disconnected from the source of power. However, a current-limiting device without a disconnecting means is permitted on the supply side of the service disconnecting means. In addition, a single disconnecting means is permitted on the supply side of more than one set of fuses as permitted by the exception in § 1910.305(j)(4)(vi) for group operation of motors, and a single disconnecting means is permitted for fixed electric space-heating equipment.
Overcurrent devices shall be readily accessible to each employee or authorized building management personnel. These overcurrent devices may not be located where they will be exposed to physical damage or in the vicinity of easily ignitable material.
A circuit breaker with a straight voltage rating, such as 240 V or 480 V, may only be installed in a circuit in which the nominal voltage between any two conductors does not exceed the circuit breaker's voltage rating. A two-pole circuit breaker may not be used for protecting a 3-phase, corner-grounded delta circuit unless the circuit breaker is marked 1Φ -- 3Φ to indicate such suitability. A circuit breaker with a slash rating, such as 120/240 V or 480Y/277 V, may only be installed in a circuit where the nominal voltage of any conductor to ground does not exceed the lower of the two values of the circuit breaker's voltage rating and the nominal voltage between any two conductors does not exceed the higher value of the circuit breaker's voltage rating.
Fuses and circuit breakers shall be so located or shielded that employees will not be burned or otherwise injured by their operation. Handles or levers of circuit breakers, and similar parts that may move suddenly in such a way that persons in the vicinity are likely to be injured by being struck by them, shall be guarded or isolated.
Circuit breakers shall clearly indicate whether they are in the open (off) or closed (on) position.
Where circuit breaker handles on switchboards are operated vertically rather than horizontally or rotationally, the up position of the handle shall be the closed (on) position.
Circuit breakers used as switches in 120-volt and 277-volt, fluorescent lighting circuits shall be listed and marked "SWD."
Except for motor running overload protection, overcurrent devices may not interrupt the continuity of the grounded conductor unless all conductors of the circuit are opened simultaneously.
The following requirements apply to feeders and branch circuits energized at more than 600 volts, nominal:
Feeder and branch-circuit conductors shall have overcurrent protection in each ungrounded conductor located at the point where the conductor receives its supply or at a location in the circuit determined under engineering supervision;
Circuit breakers used for overcurrent protection of three-phase circuits shall have a minimum of three overcurrent relays operated from three current transformers. On three-phase, three-wire circuits, an overcurrent relay in the residual circuit of the current transformers may replace one of the phase relays. An overcurrent relay, operated from a current transformer that links all phases of a three-phase, three-wire circuit, may replace the residual relay and one other phase-conductor current transformer. Where the neutral is not grounded on the load side of the circuit, the current transformer may link all three phase conductors and the grounded circuit conductor (neutral); and
If fuses are used for overcurrent protection, a fuse shall be connected in series with each ungrounded conductor;
The operating time of the protective device, the available short-circuit current, and the conductor used shall be coordinated to prevent damaging or dangerous temperatures in conductors or conductor insulation under short-circuit conditions; and
The continuous ampere rating of a fuse may not exceed three times the ampacity of the conductors. The long-time trip element setting of a breaker or the minimum trip setting of an electronically actuated fuse may not exceed six times the ampacity of the conductor. for fire pumps, conductors may be protected for short circuit only; and
Conductors tapped to a feeder may be protected by the feeder overcurrent device where that overcurrent device also protects the tap conductor.
Each protective device shall be capable of detecting and interrupting all values of current that can occur at its location in excess of its trip setting or melting point;
Paragraphs (g)(1) through (g)(9) of this section contain grounding requirements for systems, circuits, and equipment.
Systems that supply premises wiring shall be grounded as follows:
All 3-wire dc systems shall have their neutral conductor grounded;
AC circuits of less than 50 volts shall be grounded if they are installed as overhead conductors outside of buildings or if they are supplied by transformers and the transformer primary supply system is ungrounded or exceeds 150 volts to ground;
AC systems of 50 volts to 1000 volts shall be grounded under any of the following conditions, unless exempted by paragraph (g)(1)(v) of this section:
If the system can be so grounded that the maximum voltage to ground on the ungrounded conductors does not exceed 150 volts;
If the system is nominally rated three-phase, four-wire wye connected in which the neutral is used as a circuit conductor;
If the system is nominally rated three-phase, four-wire delta connected in which the midpoint of one phase is used as a circuit conductor; or
AC systems of 50 volts to 1000 volts are not required to be grounded under any of the following conditions:
If the system is used exclusively to supply industrial electric furnaces for melting, refining, tempering, and the like;
If the system is separately derived and is used exclusively for rectifiers supplying only adjustable speed industrial drives;
If the system is separately derived and is supplied by a transformer that has a primary voltage rating less than 1000 volts, provided all of the following conditions are met:
The system is used exclusively for control circuits;
The conditions of maintenance and supervision ensure that only qualified persons will service the installation;
Continuity of control power is required; and
Ground detectors are installed on the control system;
If the system is an isolated power system that supplies circuits in health care facilities; or
If the system is a high-impedance grounded neutral system in which a grounding impedance, usually a resistor, limits the ground-fault current to a low value for 3-phase ac systems of 480 volts to 1000 volts provided all of the following conditions are met:
The conditions of maintenance and supervision ensure that only qualified persons will service the installation;
Ground detectors are installed on the system; and
Two-wire dc systems operating at over 50 volts through 300 volts between conductors shall be grounded unless:
They supply only industrial equipment in limited areas and are equipped with a ground detector;
They are rectifier-derived from an ac system complying with paragraphs (g)(1)(iii), (g)(1)(iv), and (g)(1)(v) of this section; or
They are fire-alarm circuits having a maximum current of 0.030 amperes;
The conductor to be grounded for ac premises wiring systems required to be grounded by paragraph (g)(1) of this section shall be as follows:
One conductor of a single-phase, two-wire system shall be grounded;
The common conductor of a multiphase system having one wire common to all phases shall be grounded;
One phase conductor of a multiphase system where one phase is grounded shall be grounded; and
The neutral conductor of a multiphase system in which one phase is used as a neutral conductor shall be grounded.
The neutral conductor of a single-phase, three-wire system shall be grounded;
The frame of a portable generator need not be grounded and may serve as the grounding electrode for a system supplied by the generator under the following conditions:
The generator supplies only equipment mounted on the generator or cord- and plug-connected equipment through receptacles mounted on the generator, or both; and
The noncurrent-carrying metal parts of equipment and the equipment grounding conductor terminals of the receptacles are bonded to the generator frame.
A system conductor that is required to be grounded by the provisions of paragraph (g)(2) of this section shall be bonded to the generator frame where the generator is a component of a separately derived system.
The frame of a vehicle need not be grounded and may serve as the grounding electrode for a system supplied by a generator located on the vehicle under the following conditions:
The frame of the generator is bonded to the vehicle frame;
The generator supplies only equipment located on the vehicle and cord- and plug-connected equipment through receptacles mounted on the vehicle;
The noncurrent-carrying metal parts of equipment and the equipment grounding conductor terminals of the receptacles are bonded to the generator frame; and
The system complies with all other provisions of paragraph (g) of this section.
For a grounded system, a grounding electrode conductor shall be used to connect both the equipment grounding conductor and the grounded circuit conductor to the grounding electrode. Both the equipment grounding conductor and the grounding electrode conductor shall be connected to the grounded circuit conductor on the supply side of the service disconnecting means or on the supply side of the system disconnecting means or overcurrent devices if the system is separately derived.
On extensions of existing branch circuits that do not have an equipment grounding conductor, grounding-type receptacles may be grounded to a grounded cold water pipe near the equipment if the extension was installed before August 13, 2007. When any element of this branch circuit is replaced, the entire branch circuit shall use an equipment grounding conductor that complies with all other provisions of paragraph (g) of this section.
For an ungrounded service-supplied system, the equipment grounding conductor shall be connected to the grounding electrode conductor at the service equipment. For an ungrounded separately derived system, the equipment grounding conductor shall be connected to the grounding electrode conductor at, or ahead of, the system disconnecting means or overcurrent devices.
The path to ground from circuits, equipment, and enclosures shall be permanent, continuous, and effective.
Metal cable trays, metal raceways, and metal enclosures for conductors shall be grounded, except that:
Metal enclosures such as sleeves that are used to protect cable assemblies from physical damage need not be grounded; and
Metal enclosures for conductors added to existing installations of open wire, knob-and-tube wiring, and nonmetallic-sheathed cable need not be grounded if all of the following conditions are met:
Enclosures are free from probable contact with ground, grounded metal, metal laths, or other conductive materials; and
Frames of electric ranges, wall-mounted ovens, counter-mounted cooking units, clothes dryers, and metal outlet or junction boxes that are part of the circuit for these appliances shall be grounded.
Exposed noncurrent-carrying metal parts of fixed equipment that may become energized shall be grounded under any of the following conditions:
If within 2.44 m (8 ft) vertically or 1.52 m (5 ft) horizontally of ground or grounded metal objects and subject to employee contact;
If located in a wet or damp location and not isolated;
If supplied by a metal-clad, metal-sheathed, or grounded metal raceway wiring method; or
If equipment operates with any terminal at over 150 volts to ground.
Notwithstanding the provisions of paragraph (g)(6)(iv) of this section, exposed noncurrent-carrying metal parts of the following types of fixed equipment need not be grounded:
Enclosures for switches or circuit breakers used for other than service equipment and accessible to qualified persons only;
Electrically heated appliances that are permanently and effectively insulated from ground;
Distribution apparatus, such as transformer and capacitor cases, mounted on wooden poles, at a height exceeding 2.44 m (8.0 ft) above ground or grade level; and
Listed equipment protected by a system of double insulation, or its equivalent, and distinctively marked as such.
Exposed noncurrent-carrying metal parts of cord- and plug-connected equipment that may become energized shall be grounded under any of the following conditions:
If in hazardous (classified) locations (see § 1910.307);
If operated at over 150 volts to ground, except for guarded motors and metal frames of electrically heated appliances if the appliance frames are permanently and effectively insulated from ground;
Refrigerators, freezers, and air conditioners;
Clothes-washing, clothes-drying, and dishwashing machines, sump pumps, and electric aquarium equipment;
Hand-held motor-operated tools, stationary and fixed motor-operated tools, and light industrial motor-operated tools;
Motor-operated appliances of the following types: hedge clippers, lawn mowers, snow blowers, and wet scrubbers;
Cord- and plug-connected appliances used in damp or wet locations, or by employees standing on the ground or on metal floors or working inside of metal tanks or boilers;
Portable and mobile X-ray and associated equipment;
Tools likely to be used in wet and conductive locations; and
Notwithstanding the provisions of paragraph (g)(6)(vi) of this section, the following equipment need not be grounded:
Tools likely to be used in wet and conductive locations if supplied through an isolating transformer with an ungrounded secondary of not over 50 volts; and
Listed or labeled portable tools and appliances if protected by an approved system of double insulation, or its equivalent, and distinctively marked.
Metal enclosures for service equipment shall be grounded.
The metal parts of the following nonelectrical equipment shall be grounded: frames and tracks of electrically operated cranes and hoists; frames of nonelectrically driven elevator cars to which electric conductors are attached; hand-operated metal shifting ropes or cables of electric elevators; and metal partitions, grill work, and similar metal enclosures around equipment of over 750 volts between conductors.
Noncurrent-carrying metal parts of fixed equipment, if required to be grounded by this subpart, shall be grounded by an equipment grounding conductor that is contained within the same raceway, cable, or cord, or runs with or encloses the circuit conductors. For dc circuits only, the equipment grounding conductor may be run separately from the circuit conductors.
For installations made before April 16, 1981, electric equipment is also considered to be effectively grounded if it is secured to, and in metallic contact with, the grounded structural metal frame of a building. When any element of this branch circuit is replaced, the entire branch circuit shall use an equipment grounding conductor that complies with all other provisions of paragraph (g) of this section.
Electric equipment is considered to be effectively grounded if it is secured to, and in electrical contact with, a metal rack or structure that is provided for its support and the metal rack or structure is grounded by the method specified for the noncurrent-carrying metal parts of fixed equipment in paragraph (g)(8)(i) of this section. Metal car frames supported by metal hoisting cables attached to or running over metal sheaves or drums of grounded elevator machines are also considered to be effectively grounded.
If high voltage systems are grounded, they shall comply with all applicable provisions of paragraphs (g)(1) through (g)(8) of this section as supplemented and modified by the following requirements:
Systems supplying portable or mobile high voltage equipment, other than substations installed on a temporary basis, shall comply with the following:
The system shall have its neutral grounded through an impedance. If a delta-connected high voltage system is used to supply the equipment, a system neutral shall be derived.
Exposed noncurrent-carrying metal parts of portable and mobile equipment shall be connected by an equipment grounding conductor to the point at which the system neutral impedance is grounded.
Ground-fault detection and relaying shall be provided toautomatically deenergize any high voltage system component that has developed a ground fault. The continuity of the equipment grounding conductor shall be continuously monitored so as to deenergize automatically the high voltage feeder to the portable equipment upon loss of continuity of the equipment grounding conductor.
The grounding electrode to which the portable equipment system neutral impedance is connected shall be isolated from and separated in the ground by at least 6.1 m (20.0 ft) from any other system or equipment grounding electrode, and there shall be no direct connection between the grounding electrodes, such as buried pipe, fence, and so forth.
All noncurrent-carrying metal parts of portable equipment and fixed equipment, including their associated fences, housings, enclosures, and supporting structures, shall be grounded. However, equipment that is guarded by location and isolated from ground need not be grounded. Additionally, pole-mounted distribution apparatus at a height exceeding 2.44 m (8.0 ft) above ground or grade level need not be grounded.

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981, as amended at 55 FR 32015, Aug. 6, 1990; 72 FR 7195, Feb. 14, 2007; 73 FR 64205, Oct. 29, 2008]
The provisions of this section do not apply to conductors that are an integral part of factory-assembled equipment.
Metal raceways, cable trays, cable armor, cable sheath, enclosures, frames, fittings, and other metal noncurrent-carrying parts that are to serve as grounding conductors, with or without the use of supplementary equipment grounding conductors, shall be effectively bonded where necessary to ensure electrical continuity and the capacity to conduct safely any fault current likely to be imposed on them. Any nonconductive paint, enamel, or similar coating shall be removed at threads, contact points, and contact surfaces or be connected by means of fittings designed so as to make such removal unnecessary.
No wiring systems of any type may be installed in ducts used to transport dust, loose stock, or flammable vapors. No wiring system of any type may be installed in any duct used for vapor removal or for ventilation of commercial-type cooking equipment, or in any shaft containing only such ducts.
Where necessary for the reduction of electrical noise (electromagnetic interference) of the grounding circuit, an equipment enclosure supplied by a branch circuit may be isolated from a raceway containing circuits supplying only that equipment by one or more listed nonmetallic raceway fittings located at the point of attachment of the raceway to the equipment enclosure. The metal raceway shall be supplemented by an internal insulated equipment grounding conductor installed to ground the equipment enclosure.
Except as specifically modified in this paragraph, all other requirements of this subpart for permanent wiring shall also apply to temporary wiring installations.
Temporary electrical power and lighting installations of 600 volts, nominal, or less may be used only as follows:
During and for remodeling, maintenance, or repair of buildings, structures, or equipment, and similar activities;
For a period not to exceed 90 days for Christmas decorative lighting, carnivals, and similar purposes; or
For experimental or development work, and during emergencies.
Temporary electrical installations of more than 600 volts may be used only during periods of tests, experiments, emergencies, or construction-like activities.
Feeders shall originate in an approved distribution center.
Conductors shall be run as multiconductor cord or cable assemblies. However, if installed as permitted in paragraph (a)(2)(i)(C) of this section, and if accessible only to qualified persons, feeders may be run as single insulated conductors.
All lamps for general illumination shall be protected from accidental contact or breakage by a suitable fixture or lampholder with a guard. Brass shell, paper-lined sockets, or other metal-cased sockets may not be used unless the shell is grounded.
Branch circuits shall originate in an approved power outlet or panelboard.
Conductors shall be multiconductor cord or cable assemblies or open conductors. If run as open conductors, they shall be fastened at ceiling height every 3.05 m (10.0 ft).
No branch-circuit conductor may be laid on the floor.
Each branch circuit that supplies receptacles or fixed equipment shall contain a separate equipment grounding conductor if run as open conductors.
Receptacles shall be of the grounding type. Unless installed in a continuous grounded metallic raceway or metallic covered cable, each branch circuit shall contain a separate equipment grounding conductor and all receptacles shall be electrically connected to the grounding conductor.
No bare conductors nor earth returns may be used for the wiring of any temporary circuit.
Suitable disconnecting switches or plug connectors shall be installed to permit the disconnection of all ungrounded conductors of each temporary circuit. Multiwire branch circuits shall be provided with a means to disconnect simultaneously all ungrounded conductors at the power outlet or panelboard where the branch circuit originated.

Note to paragraph (a)(2)(viii) of this section. Circuit breakers with their handles connected by approved handle ties are considered a single disconnecting means for the purpose of this requirement.
Flexible cords and cables shall be protected from accidental damage, as might be caused, for example, by sharp corners, projections, and doorways or other pinch points.
Cable assemblies and flexible cords and cables shall be supported in place at intervals that ensure that they will be protected from physical damage. Support shall be in the form of staples, cables ties, straps, or similar type fittings installed so as not to cause damage.
Temporary wiring shall be removed immediately upon completion of the project or purpose for which the wiring was installed.
Only the following wiring methods may be installed in cable tray systems: armored cable; electrical metallic tubing; electrical nonmetallic tubing; fire alarm cables; flexible metal conduit; flexible metallic tubing; instrumentation tray cable; intermediate metal conduit; liquidtight flexible metal conduit; liquidtight flexible nonmetallic conduit; metal-clad cable; mineral-insulated, metal-sheathed cable; multiconductor service-entrance cable; multiconductor underground feeder and branch-circuit cable; multipurpose and communications cables; nonmetallic-sheathed cable; power and control tray cable; power-limited tray cable; optical fiber cables; and other factory-assembled, multiconductor control, signal, or power cables that are specifically approved for installation in cable trays, rigid metal conduit, and rigid nonmetallic conduit.
Metallic cable trays may be used as equipment grounding conductors only where continuous maintenance and supervision ensure that qualified persons will service the installed cable tray system.
Cable trays in hazardous (classified) locations may contain only the cable types permitted in such locations. (See § 1910.307.)
Cable tray systems may not be used in hoistways or where subjected to severe physical damage.
In industrial establishments where conditions of maintenance and supervision assure that only qualified persons will service the installed cable tray system, the following cables may also be installed in ladder, ventilated-trough, or ventilated-channel cable trays:
Single conductor cable; the cable shall be No. 10 or larger and shall be of a type listed and marked on the surface for use in cable trays; where Nos. 10 through 40 single conductor cables are installed in ladder cable tray, the maximum allowable rung spacing for the ladder cable tray shall be 229 mm (9 in.); where exposed to direct rays of the sun, cables shall be identified as being sunlight resistant;
Welding cables installed in dedicated cable trays;
Single conductors used as equipment grounding conductors; these conductors, which may be insulated, covered, or bare, shall be No. 4 or larger; and
Multiconductor cable, Type MV; where exposed to direct rays of the sun, the cable shall be identified as being sunlight resistant.
Open wiring on insulators is only permitted on systems of 600 volts, nominal, or less for industrial or agricultural establishments, indoors or outdoors, in wet or dry locations, where subject to corrosive vapors, and for services.
In dry locations, where not exposed to severe physical damage, conductors may be separately enclosed in flexible nonmetallic tubing. The tubing shall be in continuous lengths not exceeding 4.57 m (15.0 ft) and secured to the surface by straps at intervals not exceeding 1.37 m (4.5 ft).
Open conductors shall be separated from contact with walls, floors, wood cross members, or partitions through which they pass by tubes or bushings of noncombustible, nonabsorbent insulating material. if the bushing is shorter than the hole, a waterproof sleeve of nonconductive material shall be inserted in the hole and an insulating bushing slipped into the sleeve at each end in such a manner as to keep the conductors absolutely out of contact with the sleeve. Each conductor shall be carried through a separate tube or sleeve.
Where open conductors cross ceiling joints and wall studs and are exposed to physical damage (for example, located within 2.13 m (7.0 ft) of the floor), they shall be protected.
Conductors smaller than No. 8 shall be rigidly supported on noncombustible, nonabsorbent insulating materials and may not contact any other objects. Supports shall be installed as follows:
Within 152 mm (6 in.) from a tap or splice;
Within 305 mm (12 in.) of a dead-end connection to a lampholder or receptacle; and
At intervals not exceeding 1.37 m (4.5 ft), and at closer intervals sufficient to provide adequate support where likely to be disturbed.
Conductors entering cutout boxes, cabinets, or fittings shall be protected from abrasion, and openings through which conductors enter shall be effectively closed.
Where cable is used, each cable shall be secured to the cabinet, cutout box, or meter socket enclosure. However, where cable with an entirely nonmetallic sheath enters the top of a surface-mounted enclosure through one or more nonflexible raceways not less than 457 mm (18 in.) or more than 3.05 m (10.0 ft) in length, the cable need not be secured to the cabinet, box, or enclosure provided all of the following conditions are met:
Each cable is fastened within 305 mm (12 in.) of the outer end of the raceway, measured along the sheath;
The raceway extends directly above the enclosure and does not penetrate a structural ceiling;
A fitting is provided on each end of the raceway to protect the cable from abrasion, and the fittings remain accessible after installation;
The raceway is sealed or plugged at the outer end using approved means so as to prevent access to the enclosure through the raceway;
The cable sheath is continuous through the raceway and extends into the enclosure not less than 6.35 mm (0.25 in.) beyond the fitting;
The raceway is fastened at its outer end and at other points as necessary; and
Where installed as conduit or tubing, the allowable cable fill does not exceed that permitted for complete conduit or tubing systems.
Unused openings in cabinets, boxes, and fittings shall be effectively closed.
All pull boxes, junction boxes, and fittings shall be provided with covers identified for the purpose. If metal covers are used, they shall be grounded. In completed installations, each outlet box shall have a cover, faceplate, or fixture canopy. Covers of outlet boxes having holes through which flexible cord pendants pass shall be provided with bushings designed for the purpose or shall have smooth, well-rounded surfaces on which the cords may bear.
Where a fixture canopy or pan is used, any combustible wall or ceiling finish exposed between the edge of the canopy or pan and the outlet box shall be covered with noncombustible material.
In addition to other requirements in this section, the following requirements apply to pull and junction boxes for systems over 600 volts, nominal:
Boxes shall provide a complete enclosure for the contained conductors or cables.
Covers for boxes shall be permanently marked "HIGH VOLTAGE." The marking shall be on the outside of the box cover and shall be readily visible and legible.
Boxes shall be closed by suitable covers securely fastened in place.

Note to paragraph (b)(3)(ii) of this section: Underground box covers that weigh over 45.4 kg (100 lbs) meet this requirement.
Single-throw knife switches shall be so placed that gravity will not tend to close them. Single-throw knife switches approved for use in the inverted position shall be provided with a locking device that will ensure that the blades remain in the open position when so set.
Double-throw knife switches may be mounted so that the throw will be either vertical or horizontal. However, if the throw is vertical, a locking device shall be provided to ensure that the blades remain in the open position when so set.
Single-throw knife switches and switches with butt contacts shall be connected so that the blades are deenergized when the switch is in the open position.
Single-throw knife switches, molded-case switches, switches with butt contacts, and circuit breakers used as switches shall be connected so that the terminals supplying the load are deenergized when the switch is in the open position. However, blades and terminals supplying the load of a switch may be energized when the switch is in the open position where the switch is connected to circuits or equipment inherently capable of providing a backfeed source of power. For such installations, a permanent sign shall be installed on the switch enclosure or immediately adjacent to open switches that read, "WARNING -- LOAD SIDE TERMINALS MAY BE ENERGIZED BY BACKFEED."
Snap switches mounted in boxes shall have faceplates installed so as to completely cover the opening and seat against the finished surface.
Snap switches, including dimmer switches, shall be effectively grounded and shall provide a means to ground metal faceplates, whether or not a metal faceplate is installed. However, if no grounding means exists within the snap-switch enclosure, or where the wiring method does not include or provide an equipment ground, a snap switch without a grounding connection is permitted for replacement purposes only. Such snap switches shall be provided with a faceplate of nonconducting, noncombustible material if they are located within reach of conducting floors or other conducting surfaces.
Switchboards that have any exposed live parts shall be located in permanently dry locations and shall be accessible only to qualified persons.
Panelboards shall be mounted in cabinets, cutout boxes, or enclosures designed for the purpose and shall be dead front. However, panelboards other than the dead front externally-operable type are permitted where accessible only to qualified persons.
Exposed blades of knife switches mounted in switchboards or panelboards shall be dead when open.
Cabinets, cutout boxes, fittings, boxes, and panelboard enclosures in damp or wet locations shall be installed so as to prevent moisture or water from entering and accumulating within the enclosures and shall be mounted so there is at least 6.35-mm (0.25-in.) airspace between the enclosure and the wall or other supporting surface. However, nonmetallic enclosures may be installed without the airspace on a concrete, masonry, tile, or similar surface. The enclosures shall be weatherproof in wet locations.
Switches, circuit breakers, and switchboards installed in wet locations shall be enclosed in weatherproof enclosures.
All conductors used for general wiring shall be insulated unless otherwise permitted in this subpart.
The conductor insulation shall be of a type that is approved for the voltage, operating temperature, and location of use.
Insulated conductors shall be distinguishable by appropriate color or other suitable means as being grounded conductors, ungrounded conductors, or equipment grounding conductors.
Flexible cords and cables shall be approved for conditions of use and location.
If used as permitted in paragraphs (g)(1)(ii)(C), (g)(1)(ii)(G), or (g)(1)(ii)(I) of this section, the flexible cord shall be equipped with an attachment plug and shall be energized from an approved receptacle outlet.
Unless specifically permitted otherwise in paragraph (g)(1)(ii) of this section, flexible cords and cables may not be used:
As a substitute for the fixed wiring of a structure;
Where run through holes in walls, ceilings, or floors;
Where run through doorways, windows, or similar openings;
Where concealed behind building walls, ceilings, or floors; or
Where installed in raceways, except as otherwise permitted in this subpart.
Flexible cords used in show windows and showcases shall be Type S, SE, SEO, SEOO, SJ, SJE, SJEO, SJEOO, SJO, SJOO, SJT, SJTO, SJTOO, SO, SOO, ST, STO, or STOO, except for the wiring of chain-supported lighting fixtures and supply cords for portable lamps and other merchandise being displayed or exhibited.
Connection of stationary equipment to facilitate their frequent interchange;
Prevention of the transmission of noise or vibration;
Appliances where the fastening means and mechanical connections are designed to permit removal for maintenance and repair;
Data processing cables approved as a part of the data processing system;
Temporary wiring as permitted in paragraph (a)(2) of this section.
A conductor of a flexible cord or cable that is used as a grounded conductor or an equipment grounding conductor shall be distinguishable from other conductors. Types S, SC, SCE, SCT, SE, SEO, SEOO, SJ, SJE, SJEO, SJEOO, SJO, SJT, SJTO, SJTOO, SO, SOO, ST, STO, and STOO flexible cords and Types G, G-GC, PPE, and W flexible cables shall be durably marked on the surface at intervals not exceeding 610 mm (24 in.) with the type designation, size, and number of conductors.
Flexible cords and cables shall be connected to devices and fittings so that strain relief is provided that will prevent pull from being directly transmitted to joints or terminal screws.
Flexible cords may be used only in continuous lengths without splice or tap. Hard-service cord and junior hard-service cord No. 14 and larger may be repaired if spliced so that the splice retains the insulation, outer sheath properties, and usage characteristics of the cord being spliced.
This paragraph applies to portable cables used at more than 600 volts, nominal.
Cables operated at over 2,000 volts shall be shielded for the purpose of confining the voltage stresses to the insulation.
Grounding conductors shall be provided.
All shields shall be grounded.
The minimum bending radii for portable cables during installation and handling in service shall be adequate to prevent damage to the cable.
Connectors used to connect lengths of cable in a run shall be of a type that lock firmly together. Provisions shall be made to prevent opening or closing these connectors while energized. Strain relief shall be provided at connections and terminations.
Portable cables may not be operated with splices unless the splices are of the permanent molded, vulcanized, or other approved type.
Termination enclosures shall be suitably marked with a high voltage hazard warning, and terminations shall be accessible only to authorized and qualified employees.
Fixture wires shall be approved for the voltage, temperature, and location of use. A fixture wire which is used as a grounded conductor shall be identified.
Fixture wires may be used only:
For installation in lighting fixtures and in similar equipment where enclosed or protected and not subject to bending or twisting in use; or
For connecting lighting fixtures to the branch-circuit conductors supplying the fixtures.
Fixture wires may not be used as branch-circuit conductors except as permitted for Class 1 power limited circuits and for fire alarm circuits.
Fixtures, lampholders, lamps, rosettes, and receptacles may have no live parts normally exposed to employee contact. However, rosettes and cleat-type lampholders and receptacles located at least 2.44 m (8.0 ft) above the floor may have exposed terminals.
Lampholders of the screw-shell type shall be installed for use as lampholders only. Where supplied by a circuit having a grounded conductor, the grounded conductor shall be connected to the screw shell. Lampholders installed in wet or damp locations shall be of the weatherproof type.
Fixtures installed in wet or damp locations shall be identified for the purpose and shall be so constructed or installed that water cannot enter or accumulate in wireways, lampholders, or other electrical parts.
Handlamps of the portable type supplied through flexible cords shall be equipped with a handle of molded composition or other material identified for the purpose, and a substantial guard shall be attached to the lampholder or the handle. Metal shell, paper-lined lampholders may not be used.
All 15- and 20-ampere attachment plugs and connectors shall be constructed so that there are no exposed current-carrying parts except the prongs, blades, or pins. The cover for wire terminations shall be a part that is essential for the operation of an attachment plug or connector (dead-front construction). Attachment plugs shall be installed so that their prongs, blades, or pins are not energized unless inserted into an energized receptacle. No receptacles may be installed so as to require an energized attachment plug as its source of supply.
Nongrounding-type receptacles and connectors may not be used for grounding-type attachment plugs.
A receptacle installed in a wet or damp location shall be suitable for the location.
A receptacle installed outdoors in a location protected from the weather or in other damp locations shall have an enclosure for the receptacle that is weatherproof when the receptacle is covered (attachment plug cap not inserted and receptacle covers closed).

Note to paragraph (j)(2)(v) of this section. A receptacle is considered to be in a location protected from the weather when it is located under roofed open porches, canopies, marquees, or the like and where it will not be subjected to a beating rain or water runoff.
A receptacle installed in a wet location where the product intended to be plugged into it is not attended while in use (for example, sprinkler system controllers, landscape lighting, and holiday lights) shall have an enclosure that is weatherproof with the attachment plug cap inserted or removed.
A receptacle installed in a wet location where the product intended to be plugged into it will be attended while in use (for example, portable tools) shall have an enclosure that is weatherproof when the attachment plug cap is removed.
Receptacles, cord connectors, and attachment plugs shall be constructed so that no receptacle or cord connector will accept an attachment plug with a different voltage or current rating than that for which the device is intended. However, a 20-ampere T-slot receptacle or cord connector may accept a 15-ampere attachment plug of the same voltage rating.
Appliances may have no live parts normally exposed to contact other than parts functioning as open-resistance heating elements, such as the heating elements of a toaster, which are necessarily exposed.
Each electric appliance shall be provided with a nameplate giving the identifying name and the rating in volts and amperes, or in volts and watts. If the appliance is to be used on a specific frequency or frequencies, it shall be so marked. Where motor overload protection external to the appliance is required, the appliance shall be so marked.
Marking shall be located so as to be visible or easily accessible after installation.
Each appliance shall have a means to disconnect it from all ungrounded conductors. If an appliance is supplied by more than one source, the disconnecting means shall be grouped and identified.
This paragraph applies to motors, motor circuits, and controllers.
If specified in paragraph (j)(4) of this section that one piece of equipment shall be "within sight of" another piece of equipment, the piece of equipment shall be visible and not more than 15.24 m (50.0 ft) from the other.
The disconnecting means shall disconnect the motor and the controller from all ungrounded supply conductors and shall be so designed that no pole can be operated independently.
The disconnecting means shall plainly indicate whether it is in the open (off) or closed (on) position.
The disconnecting means shall be readily accessible. If more than one disconnect is provided for the same equipment, only one need be readily accessible.
An individual disconnecting means shall be provided for each motor, but a single disconnecting means may be used for a group of motors under any one of the following conditions:
If a number of motors drive several parts of a single machine or piece of apparatus, such as a metal or woodworking machine, crane, or hoist;
If a group of motors is under the protection of one set of branch-circuit protective devices; or
If a group of motors is in a single room within sight of the location of the disconnecting means.
Motors, motor-control apparatus, and motor branch-circuit conductors shall be protected against overheating due to motor overloads or failure to start, and against short-circuits or ground faults. These provisions do not require overload protection that will stop a motor where a shutdown is likely to introduce additional or increased hazards, as in the case of fire pumps, or where continued operation of a motor is necessary for a safe shutdown of equipment or process and motor overload sensing devices are connected to a supervised alarm.
Where live parts of motors or controllers operating at over 150 volts to ground are guarded against accidental contact only by location, and where adjustment or other attendance may be necessary during the operation of the apparatus, suitable insulating mats or platforms shall be provided so that the attendant cannot readily touch live parts unless standing on the mats or platforms.
An individual disconnecting means shall be provided for each controller. A disconnecting means shall be located within sight of the controller location. However, a single disconnecting means may be located adjacent to a group of coordinated controllers mounted adjacent to each other on a multi-motor continuous process machine. The controller disconnecting means for motor branch circuits over 600 volts, nominal, may be out of sight of the controller, if the controller is marked with a warning label giving the location and identification of the disconnecting means that is to be locked in the open position.
Paragraph (j)(5) of this section covers the installation of all transformers except the following:
Dry-type transformers installed as a component part of other apparatus;
Transformers that are an integral part of an X-ray, high frequency, or electrostatic-coating apparatus;
Transformers used with Class 2 and Class 3 circuits, sign and outline lighting, electric discharge lighting, and power-limited fire-alarm circuits; and
Liquid-filled or dry-type transformers used for research, development, or testing, where effective safeguard arrangements are provided.
Dry-type, high fire point liquid-insulated, and askarel-insulated transformers installed indoors and rated over 35kV shall be in a vault.
Oil-insulated transformers installed indoors shall be installed in a vault.
Combustible material, combustible buildings and parts of buildings, fire escapes, and door and window openings shall be safeguarded from fires that may originate in oil-insulated transformers attached to or adjacent to a building or combustible material.
Transformer vaults shall be constructed so as to contain fire and combustible liquids within the vault and to prevent unauthorized access. Locks and latches shall be so arranged that a vault door can be readily opened from the inside.
Any pipe or duct system foreign to the electrical installation may not enter or pass through a transformer vault.

Note to paragraph (j)(5)(vii) of this section. Piping or other facilities provided for vault fire protection, or for transformer cooling, are not considered foreign to the electrical installation.
The operating voltage of exposed live parts of transformer installations shall be indicated by signs or visible markings on the equipment or structure.
All capacitors, except surge capacitors or capacitors included as a component part of other apparatus, shall be provided with an automatic means of draining the stored charge after the capacitor is disconnected from its source of supply.
The following requirements apply to capacitors installed on circuits operating at more than 600 volts, nominal:
Group-operated switches shall be used for capacitor switching and shall be capable of the following:
Carrying continuously not less than 135 percent of the rated current of the capacitor installation;
Interrupting the maximum continuous load current of each capacitor, capacitor bank, or capacitor installation that will be switched as a unit;
Withstanding the maximum inrush current, including contributions from adjacent capacitor installations; and
Carrying currents due to faults on the capacitor side of the switch;
A means shall be installed to isolate from all sources of voltage each capacitor, capacitor bank, or capacitor installation that will be removed from service as a unit. The isolating means shall provide a visible gap in the electric circuit adequate for the operating voltage;
Isolating or disconnecting switches (with no interrupting rating) shall be interlocked with the load interrupting device or shall be provided with prominently displayed caution signs to prevent switching load current; and
For series capacitors, the proper switching shall be assured by use of at least one of the following:
Mechanically sequenced isolating and bypass switches;
Switching procedure prominently displayed at the switching location.
Provisions shall be made for sufficient diffusion and ventilation of gases from storage batteries to prevent the accumulation of explosive mixtures.

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981; 72 FR 7201, Feb. 14, 2007]
Each sign and outline lighting system, or feeder circuit or branch circuit supplying a sign or outline lighting system, shall be controlled by an externally operable switch or circuit breaker that will open all ungrounded conductors. However, a disconnecting means is not required for an exit directional sign located within a building or for cord-connected signs with an attachment plug.
Signs and outline lighting systems located within fountains shall have the disconnect located at least 1.52 m (5.0 ft) from the inside walls of the fountain.
The disconnecting means shall be within sight of the sign or outline lighting system that it controls. Where the disconnecting means is out of the line of sight from any section that may be energized, the disconnecting means shall be capable of being locked in the open position.
Doors or covers giving access to uninsulated parts of indoor signs or outline lighting exceeding 600 volts and accessible to other than qualified persons shall either be provided with interlock switches to disconnect the primary circuit or shall be so fastened that the use of other than ordinary tools will be necessary to open them.
Signs or outline lighting systems operated by electronic or electromechanical controllers located external to the sign or outline lighting system may have a disconnecting means located within sight of the controller or in the same enclosure with the controller. The disconnecting means shall disconnect the sign or outline lighting system and the controller from all ungrounded supply conductors. It shall be designed so no pole can be operated independently and shall be capable of being locked in the open position.
This paragraph applies to the installation of electric equipment and wiring used in connection with cranes, monorail hoists, hoists, and all runways.
A disconnecting means shall be provided between the runway contact conductors and the power supply. Such disconnecting means shall consist of a motor-circuit switch, circuit breaker, or molded case switch. The disconnecting means shall open all ungrounded conductors simultaneously and shall be:
Readily accessible and operable from the ground or floor level;
Placed within view of the runway contact conductors.
Arranged to be locked in the open position; and
Except as provided in paragraph (b)(2)(iv) of this section, a motor-circuit switch, molded case switch, or circuit breaker shall be provided in the leads from the runway contact conductors or other power supply on all cranes and monorail hoists.
Means shall be provided at the operating station to open the power circuit to all motors of the crane or monorail hoist where the disconnecting means is not readily accessible from the crane or monorail hoist operating station.
The disconnecting means may be omitted where a monorail hoist or hand-propelled crane bridge installation meets all of the following conditions:
The unit is controlled from the ground or floor level;
The unit is within view of the power supply disconnecting means; and
No fixed work platform has been provided for servicing the unit.
The disconnecting means shall be capable of being locked in the open position.
A limit switch or other device shall be provided to prevent the load block from passing the safe upper limit of travel of any hoisting mechanism.
The dimension of the working space in the direction of access to live parts that may require examination, adjustment, servicing, or maintenance while alive shall be a minimum of 762 mm (2.5 ft). Where controls are enclosed in cabinets, the doors shall either open at least 90 degrees or be removable.
The following requirements apply to elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts.
Elevators, dumbwaiters, escalators, moving walks, wheelchair lifts, and stairway chair lifts shall have a single means for disconnecting all ungrounded main power supply conductors for each unit.
Control panels not located in the same space as the drive machine shall be located in cabinets with doors or panels capable of being locked closed.
The disconnecting means shall be an enclosed externally operable fused motor circuit switch or circuit breaker capable of being locked in the open position. The disconnecting means shall be a listed device.
No provision may be made to open or close this disconnecting means from any other part of the premises. If sprinklers are installed in hoistways, machine rooms, or machinery spaces, the disconnecting means may automatically open the power supply to the affected elevators prior to the application of water. No provision may be made to close this disconnecting means automatically (that is, power may only be restored by manual means).
The disconnecting means shall be located where it is readily accessible to qualified persons.
On elevators without generator field control, the disconnecting means shall be located within sight of the motor controller. Driving machines or motion and operation controllers not within sight of the disconnecting means shall be provided with a manually operated switch installed in the control circuit adjacent to the equipment in order to prevent starting. Where the driving machine is located in a remote machinery space, a single disconnecting means for disconnecting all ungrounded main power supply conductors shall be provided and be capable of being locked in the open position.
On escalators and moving walks, the disconnecting means shall be installed in the space where the controller is located.
On wheelchair lifts and stairway chair lifts, the disconnecting means shall be located within sight of the motor controller.
On elevators with generator field control, the disconnecting means shall be located within sight of the motor controller for the driving motor of the motor-generator set. Driving machines, motor-generator sets, or motion and operation controllers not within sight of the disconnecting means shall be provided with a manually operated switch installed in the control circuit to prevent starting. The manually operated switch shall be installed adjacent to this equipment. Where the driving machine or the motor-generator set is located in a remote machinery space, a single means for disconnecting all ungrounded main power supply conductors shall be provided and be capable of being locked in the open position.
Where there is more than one driving machine in a machine room, the disconnecting means shall be numbered to correspond to the identifying number of the driving machine that they control.
The disconnecting means shall be provided with a sign to identify the location of the supply-side overcurrent protective device.
On single-car and multicar installations, equipment receiving electrical power from more than one source shall be provided with a disconnecting means for each source of electrical power. The disconnecting means shall be within sight of the equipment served.
A warning sign shall be mounted on or next to the disconnecting means where multiple disconnecting means are used and parts of the controllers remain energized from a source other than the one disconnected. The sign shall be clearly legible and shall read "WARNING -- PARTS OF THE CONTROLLER ARE NOT DEENERGIZED BY THIS SWITCH."
A warning sign worded as required in paragraph (c)(8) of this section shall be mounted on or next to the disconnecting means where interconnections between controllers are necessary for the operation of the system on multicar installations that remain energized from a source other than the one disconnected.
Motor controllers may be located outside the spaces otherwise required by paragraph (c) of this section, provided they are in enclosures with doors or removable panels capable of being locked closed and the disconnecting means is located adjacent to or is an integral part of the motor controller. Motor controller enclosures for escalators or moving walks may be located in the balustrade on the side located away from the moving steps or moving treadway. If the disconnecting means is an integral part of the motor controller, it shall be operable without opening the enclosure.
A disconnecting means shall be provided in the supply circuit for each arc welder that is not equipped with a disconnect mounted as an integral part of the welder. The disconnecting means shall be a switch or circuit breaker, and its rating may not be less than that necessary to accommodate overcurrent protection.
A switch or circuit breaker shall be provided by which each resistance welder and its control equipment can be disconnected from the supply circuit. The ampere rating of this disconnecting means may not be less than the supply conductor ampacity. The supply circuit switch may be used as the welder disconnecting means where the circuit supplies only one welder.
A means shall be provided to disconnect power to all electronic equipment in an information technology equipment room. There shall also be a similar means to disconnect the power to all dedicated heating, ventilating, and air-conditioning (HVAC) systems serving the room and to cause all required fire/smoke dampers to close.
The control for these disconnecting means shall be grouped and identified and shall be readily accessible at the principal exit doors. A single means to control both the electronic equipment and HVAC system is permitted.
Integrated electrical systems covered by § 1910.308(g) need not have the disconnecting means required by paragraph (e)(1) of this section.
This paragraph applies to X-ray equipment.
A disconnecting means shall be provided in the supply circuit. The disconnecting means shall be operable from a location readily accessible from the X-ray control. For equipment connected to a 120-volt branch circuit of 30 amperes or less, a grounding-type attachment plug cap and receptacle of proper rating may serve as a disconnecting means.
If more than one piece of equipment is operated from the same high-voltage circuit, each piece or each group of equipment as a unit shall be provided with a high-voltage switch or equivalent disconnecting means. The disconnecting means shall be constructed, enclosed, or located so as to avoid contact by employees with its live parts.
The following requirements apply to industrial and commercial laboratory equipment.
Radiographic and fluoroscopic-type equipment shall be effectively enclosed or shall have interlocks that deenergize the equipment automatically to prevent ready access to live current-carrying parts.
Diffraction- and irradiation-type equipment shall have a pilot light, readable meter deflection, or equivalent means to indicate when the equipment is energized, unless the equipment or installation is effectively enclosed or is provided with interlocks to prevent access to live current-carrying parts during operation.
This paragraph applies to induction and dielectric heating equipment and accessories for industrial and scientific applications, but not for medical or dental applications or for appliances.
The converting apparatus (including the dc line) and high-frequency electric circuits (excluding the output circuits and remote-control circuits) shall be completely contained within enclosures of noncombustible material.
Doors or detachable panels shall be employed for internal access. Where doors are used giving access to voltages from 500 to 1000 volts ac or dc, either door locks shall be provided or interlocks shall be installed. Where doors are used giving access to voltages of over 1000 volts ac or dc, either mechanical lockouts with a disconnecting means to prevent access until circuit parts within the cubicle are deenergized, or both door interlocking and mechanical door locks, shall be provided. Detachable panels not normally used for access to such parts shall be fastened in a manner that will make them difficult to remove (for example, by requiring the use of tools).
Warning labels or signs that read "DANGER -- HIGH VOLTAGE -- KEEP OUT" shall be attached to the equipment and shall be plainly visible where persons might contact energized parts when doors are opened or closed or when panels are removed from compartments containing over 250 volts ac or dc.
Induction and dielectric heating equipment shall be protected as follows:
Protective cages or adequate shielding shall be used to guard work applicators other than induction heating coils.
Induction heating coils shall be protected by insulation or refractory materials or both.
Interlock switches shall be used on all hinged access doors, sliding panels, or other such means of access to the applicator, unless the applicator is an induction heating coil at dc ground potential or operating at less than 150 volts ac.
Interlock switches shall be connected in such a manner as to remove all power from the applicator when any one of the access doors or panels is open.
A readily accessible disconnecting means shall be provided by which each heating equipment can be isolated from its supply circuit. The ampere rating of this disconnecting means may not be less than the nameplate current rating of the equipment. The supply circuit disconnecting means is permitted as a heating equipment disconnecting means where the circuit supplies only one piece of equipment.
All panel controls shall be of dead-front construction.
If remote controls are used for applying power, a selector switch shall be provided and interlocked to provide power from only one control point at a time.
Switches operated by foot pressure shall be provided with a shield over the contact button to avoid accidental closing of the switch.
This paragraph applies to the installation of the electrical components and accessory equipment of electrolytic cells, electrolytic cell lines, and process power supply for the production of aluminum, cadmium, chlorine, copper, fluorine, hydrogen peroxide, magnesium, sodium, sodium chlorate, and zinc. Cells used as a source of electric energy and for electroplating processes and cells used for production of hydrogen are not covered by this paragraph.
Installations covered by paragraph (h) of this section shall comply with all applicable provisions of this subpart, except as follows:
Overcurrent protection of electrolytic cell dc process power circuits need not comply with the requirements of § 1910.304(f);
Electrolytic cells, cell line conductors, cell line attachments, and the wiring of auxiliary equipment and devices within the cell line working zone need not comply with the provisions of § 1910.303 or § 1910.304(b) and (c).
Equipment located or used within the cell line working zone or associated with the cell line dc power circuits need not comply with the provisions of § 1910.304(g); and
If more than one dc cell line process power supply serves the same cell line, a disconnecting means shall be provided on the cell line circuit side of each power supply to disconnect it from the cell line circuit. Removable links or removable conductors may be used as the disconnecting means.
The frames and enclosures of portable electric equipment used within the cell line working zone may not be grounded, unless the cell line circuit voltage does not exceed 200 volts DC or the frames are guarded.
Ungrounded portable electric equipment shall be distinctively marked and shall employ plugs and receptacles of a configuration that prevents connection of this equipment to grounding receptacles and that prevents inadvertent interchange of ungrounded and grounded portable electric equipment.
Circuits supplying power to ungrounded receptacles for hand-held, cord- and plug-connected equipment shall meet the following requirements:
The circuits shall be electrically isolated from any distribution system supplying areas other than the cell line working zone and shall be ungrounded;
The circuits shall be supplied through isolating transformers with primaries operating at not more than 600 volts between conductors and protected with proper overcurrent protection;
The secondary voltage of the isolating transformers may not exceed 300 volts between conductors; and
All circuits supplied from the secondaries shall be ungrounded and shall have an approved overcurrent device of proper rating in each conductor.
Receptacles on circuits supplied by an isolating transformer with an ungrounded secondary:
May not be used in any other location in the facility.
Receptacles and their mating plugs for ungrounded equipment may not have provision for a grounding conductor and shall be of a configuration that prevents their use for equipment required to be grounded.
AC systems supplying fixed and portable electric equipment within the cell line working zone; and
Exposed conductive surfaces, such as electric equipment housings, cabinets, boxes, motors, raceways and the like that are within the cell line working zone.
Fixed electric equipment may be bonded to the energized conductive surfaces of the cell line, its attachments, or auxiliaries. if fixed electric equipment is mounted on an energized conductive surface, it shall be bonded to that surface.
Auxiliary electric equipment, such as motors, transducers, sensors, control devices, and alarms, mounted on an electrolytic cell or other energized surface shall be connected to the premises wiring systems by any of the following means:
Multiconductor hard usage or extra hard usage flexible cord;
Wire or cable in suitable nonmetallic raceways or cable trays; or
Wire or cable in suitable metal raceways or metal cable trays installed with insulating breaks such that they will not cause a potentially hazardous electrical condition.
Auxiliary nonelectrical connections such as air hoses, water hoses, and the like, to an electrolytic cell, its attachments, or auxiliary equipment may not have continuous conductive reinforcing wire, armor, braids, or the like. Hoses shall be of a nonconductive material.
The conductive surfaces of cranes and hoists that enter the cell line working zone need not be grounded. The portion of an overhead crane or hoist that contacts an energized electrolytic cell or energized attachments shall be insulated from ground.
Remote crane or hoist controls that may introduce hazardous electrical conditions into the cell line working zone shall employ one or more of the following systems:
Pendant pushbutton with nonconductive supporting means and with nonconductive surfaces or ungrounded exposed conductive surfaces; or
If an irrigation machine has a stationary point, a grounding electrode system shall be connected to the machine at the stationary point for lightning protection.
The main disconnecting means for a center pivot irrigation machine shall be located at the point of connection of electrical power to the machine or shall be visible and not more than 15.2 m (50 ft) from the machine.
A disconnecting means shall be provided for each motor and controller.
The disconnecting means shall be readily accessible and capable of being locked in the open position.
This paragraph applies to electric wiring for and equipment in or adjacent to all swimming, wading, therapeutic, and decorative pools and fountains; hydro-massage bathtubs, whether permanently installed or storable; and metallic auxiliary equipment, such as pumps, filters, and similar equipment. Therapeutic pools in health care facilities are exempt from these provisions.
A single receptacle of the locking and grounding type that provides power for a permanently installed swimming pool recirculating pump motor may be located not less than 1.52 m (5 ft) from the inside walls of a pool. All other receptacles on the property shall be located at least 3.05 m (10 ft) from the inside walls of a pool.
Where a pool is installed permanently at a dwelling unit, at least one 125-volt, 15- or 20-ampere receptacle on a general-purpose branch circuit shall be located a minimum of 3.05 m (10 ft) and not more than 6.08 m (20 ft) from the inside wall of the pool. This receptacle shall be located not more than 1.98 m (6.5 ft) above the floor, platform, or grade level serving the pool.

Note to paragraph (j)(1) of this section: In determining these dimensions, the distance to be measured is the shortest path the supply cord of an appliance connected to the receptacle would follow without piercing a floor, wall, or ceiling of a building or other effective permanent barrier.
Receptacles that are located within 4.57 m (15 ft), or 6.08 m (20 ft) if the installation was built after August 13, 2007, of the inside walls of the pool shall be protected by ground-fault circuit interrupters.
In outdoor pool areas, lighting fixtures, lighting outlets, and ceiling-suspended (paddle) fans may not be installed over the pool or over the area extending 1.52 m (5 ft) horizontally from the inside walls of a pool unless no part of the lighting fixture of a ceiling-suspended (paddle) fan is less than 3.66 m (12 ft) above the maximum water level. However, a lighting fixture or lighting outlet that was installed before April 16, 1981, may be located less than 1.52 m (5 ft) measured horizontally from the inside walls of a pool if it is at least 1.52 m (5 ft) above the surface of the maximum water level and is rigidly attached to the existing structure. It shall also be protected by a ground-fault circuit interrupter installed in the branch circuit supplying the fixture.
Lighting fixtures and lighting outlets installed in the area extending between 1.52 m (5 ft) and 3.05 m (10 ft) horizontally from the inside walls of a pool shall be protected by a ground-fault circuit interrupter unless installed 1.52 m (5 ft) above the maximum water level and rigidly attached to the structure adjacent to or enclosing the pool.
Flexible cords used with the following equipment may not exceed 0.9 m (3 ft) in length and shall have a copper equipment grounding conductor with a grounding-type attachment plug:
Cord- and plug-connected lighting fixtures installed within 4.88 m (16 ft) of the water surface of permanently installed pools; and
Other cord- and plug-connected, fixed or stationary equipment used with permanently installed pools.
A ground-fault circuit interrupter shall be installed in the branch circuit supplying underwater fixtures operating at more than 15 volts. Equipment installed underwater shall be identified for the purpose.
A lighting fixture facing upward shall have the lens adequately guarded to prevent contact by any person.
No underwater lighting fixtures may be installed for operation at over 150 volts between conductors.
All electric equipment, including power supply cords, operating at more than 15 volts and used with fountains shall be protected by ground-fault circuit interrupters.
This paragraph covers the installation of portable wiring and equipment, including wiring in or on all structures, for carnivals, circuses, exhibitions, fairs, traveling attractions, and similar events.
Electric equipment and wiring methods in or on rides, concessions, or other units shall be provided with mechanical protection where such equipment or wiring methods are subject to physical damage.
Services shall be installed in accordance with applicable requirements of this subpart, and, in addition, shall comply with the following:
Service equipment may not be installed in a location that is accessible to unqualified persons, unless the equipment is lockable; and
Service equipment shall be mounted on solid backing and installed so as to be protected from the weather, unless the equipment is of weatherproof construction.
Flexible cords and cables shall be listed for extra-hard usage. When used outdoors, flexible cords and cables shall also be listed for wet locations and shall be sunlight resistant.
Single conductor cable shall be size No. 2 or larger.
Open conductors are prohibited except as part of a listed assembly or festoon lighting installed in accordance with § 1910.304(c).
A box or fitting shall be installed at each connection point, outlet, switch point, or junction point.
Flexible cords and cables shall be continuous without splice or tap between boxes or fittings. Cord connectors may not be laid on the ground unless listed for wet locations. Connectors and cable connections may not be placed in audience traffic paths or within areas accessible to the public unless guarded.
Wiring for an amusement ride, attraction, tent, or similar structure may not be supported by another ride or structure unless specifically identified for the purpose.
Flexible cords and cables run on the ground, where accessible to the public, shall be covered with approved nonconductive mats. Cables and mats shall be arranged so as not to present a tripping hazard.
Amusement rides and amusement attractions shall be maintained not less than 4.57 m (15 ft) in any direction from overhead conductors operating at 600 volts or less, except for the conductors supplying the amusement ride or attraction. Amusement rides or attractions may not be located under or within 4.57 m (15 ft) horizontally of conductors operating in excess of 600 volts.
Electrical wiring for temporary lighting, where installed inside of tents and concessions, shall be securely installed, and, where subject to physical damage, shall be provided with mechanical protection. All temporary lamps for general illumination shall be protected from accidental breakage by a suitable fixture or lampholder with a guard.
Employers may only use portable distribution and termination boxes that meet the following requirements:
Boxes shall be designed so that no live parts are exposed to accidental contact. Where installed outdoors, the box shall be of weatherproof construction and mounted so that the bottom of the enclosure is not less than 152 mm (6 in.) above the ground;
Receptacles shall have overcurrent protection installed within the box. The overcurrent protection may not exceed the ampere rating of the receptacle, except as permitted in § 1910.305(j)(4) for motor loads;
Where single-pole connectors are used, they shall comply with the following:
Where ac single-pole portable cable connectors are used, they shall be listed and of the locking type. Where paralleled sets of current-carrying single-pole separable connectors are provided as input devices, they shall be prominently labeled with a warning indicating the presence of internal parallel connections. The use of single-pole separable connectors shall comply with at least one of the following conditions:
Connection and disconnection of connectors are only possible where the supply connectors are interlocked to the source and it is not possible to connect or disconnect connectors when the supply is energized; or
Line connectors are of the listed sequential-interlocking type so that load connectors are connected in the following sequence:
Equipment grounding conductor connection;
Ungrounded conductor connection; and so that disconnection is in the reverse order; or
Grounded circuit-conductor connection, if provided; and
A caution notice is provided adjacent to the line connectors indicating that plug connection must be in the following sequence:
Equipment grounding conductor connection;
Ungrounded conductor connection; and indicating that disconnection is in the reverse order; and
Grounded circuit-conductor connection, if provided; and
Single-pole separable connectors used in portable professional motion picture and television equipment may be interchangeable for ac or dc use or for different current ratings on the same premises only if they are listed for ac/dc use and marked to identify the system to which they are connected;
Overcurrent protection of equipment and conductors shall be provided; and
The following equipment connected to the same source shall be bonded:
Metal raceways and metal sheathed cable;
Metal enclosures of electrical equipment; and
Metal frames and metal parts of rides, concessions, trailers, trucks, or other equipment that contain or support electrical equipment.
Busbars shall have an ampere rating not less than the overcurrent device supplying the feeder supplying the box. Busbar connectors shall be provided where conductors terminate directly on busbars;
Each ride and concession shall be provided with a fused disconnect switch or circuit breaker located within sight and within 1.83 m (6 ft) of the operator's station.
Where accessible to unqualified persons, the enclosure for the switch or circuit breaker shall be of the lockable type.
A shunt trip device that opens the fused disconnect or circuit breaker when a switch located in the ride operator's console is closed is a permissible method of opening the circuit.

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981; 72 FR 7205, Feb. 14, 2007]
The disconnecting means shall be readily accessible to the operator, including when the ride is in operation.
This section covers the requirements for electric equipment and wiring in locations that are classified depending on the properties of the flammable vapors, liquids or gases, or combustible dusts or fibers that may be present therein and the likelihood that a flammable or combustible concentration or quantity is present. Hazardous (classified) locations may be found in occupancies such as, but not limited to, the following: aircraft hangars, gasoline dispensing and service stations, bulk storage plants for gasoline or other volatile flammable liquids, paint-finishing process plants, health care facilities, agricultural or other facilities where excessive combustible dusts may be present, marinas, boat yards, and petroleum and chemical processing plants. Each room, section or area shall be considered individually in determining its classification.
These hazardous (classified) locations are assigned the following designations:
For definitions of these locations, see § 1910.399.
All applicable requirements in this subpart apply to hazardous (classified) locations unless modified by provisions of this section.
In Class I locations, an installation must be classified as using the division classification system meeting paragraphs (c), (d), (e), and (f) of this section or using the zone classification system meeting paragraph (g) of this section. In Class II and Class III locations, an installation must be classified using the division classification system meeting paragraphs (c), (d), (e), and (f) of this section.
All areas designated as hazardous (classified) locations under the Class and Zone system and areas designated under the Class and Division system established after August 13, 2007 shall be properly documented. This documentation shall be available to those authorized to design, install, inspect, maintain, or operate electric equipment at the location.
Equipment, wiring methods, and installations of equipment in hazardous (classified) locations shall be intrinsically safe, approved for the hazardous (classified) location, or safe for the hazardous (classified) location. Requirements for each of these options are as follows:
Equipment and associated wiring approved as intrinsically safe is permitted in any hazardous (classified) location for which it is approved;
Equipment shall be approved not only for the class of location, but also for the ignitable or combustible properties of the specific gas, vapor, dust, or fiber that will be present.

Note to paragraph (c)(2)(i) of this section: NFPA 70, the National Electrical Code, lists or defines hazardous gases, vapors, and dusts by "Groups" characterized by their ignitable or combustible properties.
Equipment shall be marked to show the class, group, and operating temperature or temperature range, based on operation in a 40-degree C ambient, for which it is approved. The temperature marking may not exceed the ignition temperature of the specific gas or vapor to be encountered. However, the following provisions modify this marking requirement for specific equipment:
Equipment of the nonheat-producing type, such as junction boxes, conduit, and fittings, and equipment of the heat-producing type having a maximum temperature not more than 100º C (212º F) need not have a marked operating temperature or temperature range;
Fixed lighting fixtures marked for use in Class I, Division 2 or Class II, Division 2 locations only need not be marked to indicate the group;
Fixed general-purpose equipment in Class I locations, other than lighting fixtures, that is acceptable for use in Class I, Division 2 locations need not be marked with the class, group, division, or operating temperature;
Fixed dust-tight equipment, other than lighting fixtures, that is acceptable for use in Class II, Division 2 and Class III locations need not be marked with the class, group, division, or operating temperature; and
Electric equipment suitable for ambient temperatures exceeding 40º C (104º F) shall be marked with both the maximum ambient temperature and the operating temperature or temperature range at that ambient temperature; and
Equipment that is safe for the location shall be of a type and design that the employer demonstrates will provide protection from the hazards arising from the combustibility and flammability of vapors, liquids, gases, dusts, or fibers involved.

Note to paragraph (c)(3) of this section: The National Electrical Code, NFPA 70, contains guidelines for determining the type and design of equipment and installations that will meet this requirement. Those guidelines address electric wiring, equipment, and systems installed in hazardous (classified) locations and contain specific provisions for the following: wiring methods, wiring connections; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit breakers, fuses, motor controllers, receptacles, attachment plugs, meters, relays, instruments, resistors, generators, motors, lighting fixtures, storage battery charging equipment, electric cranes, electric hoists and similar equipment, utilization equipment, signaling systems, alarm systems, remote control systems, local loud speaker and communication systems, ventilation piping, live parts, lightning surge protection, and grounding.
All conduits shall be threaded and shall be made wrench-tight. Where it is impractical to make a threaded joint tight, a bonding jumper shall be utilized.
Equipment that has been approved for a Division 1 location may be installed in a Division 2 location of the same class and group. General-purpose equipment or equipment in general-purpose enclosures may be installed in Division 2 locations if the employer can demonstrate that the equipment does not constitute a source of ignition under normal operating conditions.
The following are acceptable protection techniques for electric and electronic equipment in hazardous (classified) locations.
This protection technique is permitted for equipment in the Class I, Division 1 and 2 locations for which it is approved.
This protection technique is permitted for equipment in the Class II, Division 1 and 2 locations for which it is approved.
This protection technique is permitted for equipment in the Class II, Division 2 and Class III locations for which it is approved.
This protection technique is permitted for equipment in any hazardous (classified) location for which it is approved.
This protection technique is permitted for equipment in Class I, Division 2; Class II, Division 2; or Class III, Division 1 or 2 locations.
This protection technique is permitted for equipment in Class I, Division 2; Class II, Division 2; or Class III, Division 1 or 2 locations.
This protection technique is permitted for equipment in Class I, Division 2; Class II, Division 2; or Class III, Division 1 or 2 locations.
This protection technique is permitted for current-interrupting contacts in Class I, Division 2 locations as described in the Subpart.
This protection technique is permitted for equipment in Class I, Division 2; Class II, Division 2; and Class III, Division 1 or 2 locations.
Any other protection technique that meets paragraph (c) of this section is acceptable in any hazardous (classified) location.
Employers may use the zone classification system as an alternative to the division classification system for electric and electronic equipment and wiring for all voltage in Class I, Zone 0, Zone 1, and Zone 2 hazardous (classified) locations where fire or explosion hazards may exist due to flammable gases, vapors, or liquids.
Locations shall be classified depending on the properties of the flammable vapors, liquids, or gases that may be present and the likelihood that a flammable or combustible concentration or quantity is present. Where pyrophoric materials are the only materials used or handled, these locations need not be classified.
All threaded conduit shall be threaded with an NPT (National (American) Standard Pipe Taper) standard conduit cutting die that provides 34-in. taper per foot. The conduit shall be made wrench tight to prevent sparking when fault current flows through the conduit system and to ensure the explosionproof or flameproof integrity of the conduit system where applicable.
Equipment provided with threaded entries for field wiring connection shall be installed in accordance with paragraph (g)(2)(iv)(A) or (g)(2)(iv)(B) of this section.
For equipment provided with threaded entries for NPT threaded conduit or fittings, listed conduit, conduit fittings, or cable fittings shall be used.
For equipment with metric threaded entries, such entries shall be identified as being metric, or listed adaptors to permit connection to conduit of NPT-threaded fittings shall be provided with the equipment. Adapters shall be used for connection to conduit or NPT-threaded fittings.
Each room, section, or area shall be considered individually in determining its classification.
One or more of the following protection techniques shall be used for electric and electronic equipment in hazardous (classified) locations classified under the zone classification system.
This protection technique is permitted for equipment in the Class I, Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 0 or Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 2 locations for which it is approved. Type of protection "n" is further subdivided into nA, nC, and nR.
This protection technique is permitted for equipment in the Class I, Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 1 locations for which it is approved.
This protection technique is permitted for equipment in the Class I, Zone 1 or Zone 2 locations for which it is approved.
Paragraph (g) of this section requires equipment construction and installation that will ensure safe performance under conditions of proper use and maintenance.
Classification of areas and selection of equipment and wiring methods shall be under the supervision of a qualified registered professional engineer.
A Class I, Division 1 or Division 2 location may be reclassified as a Class I, Zone 0, Zone 1, or Zone 2 location only if all of the space that is classified because of a single flammable gas or vapor source is reclassified.

Note to paragraph (g)(4) of this section: Low ambient conditions require special consideration. Electric equipment depending on the protection techniques described by paragraph (g)(3)(i) of this section may not be suitable for use at temperatures lower than -20 ºC (-4 ºF) unless they are approved for use at lower temperatures. However, at low ambient temperatures, flammable concentrations of vapors may not exist in a location classified Class I, Zone 0, 1, or 2 at normal ambient temperature.
In instances of areas within the same facility classified separately, Class I, Zone 2 locations may abut, but not overlap, Class I, Division 2 locations. Class I, Zone 0 or Zone 1 locations may not abut Class I, Division 1 or Division 2 locations.
Equipment that is listed for a Zone 0 location may be installed in a Zone 1 or Zone 2 location of the same gas or vapor. Equipment that is listed for a Zone 1 location may be installed in a Zone 2 location of the same gas or vapor.
Equipment shall be marked in accordance with paragraph (g)(5)(ii)(A) and (g)(5)(ii)(B) of this section, except as provided in (g)(5)(ii)(C).
Equipment approved for Class I, Division 1 or Class 1, Division 2 shall, in addition to being marked in accordance with (c)(2)(ii), be marked with the following:
Class I, Zone 1 or Class I, Zone 2 (as applicable);
Applicable gas classification groups; and
Equipment meeting one or more of the protection techniques described in paragraph (g)(3) of this section shall be marked with the following in the order shown:
Class, except for intrinsically safe apparatus;
Zone, except for intrinsically safe apparatus;
Applicable gas classification groups; and
Temperature classification, except for intrinsically safe apparatus.

Note to paragraph (g)(5)(ii)(B) of this section: An example of such a required marking is "Class I, Zone 0, AEx ia IIC T6." See Figure S-1 for an explanation of this marking.
Equipment that the employer demonstrates will provide protection from the hazards arising from the flammability of the gas or vapor and the zone of location involved and will be recognized as providing such protection by employees need not be marked.

Note to paragraph (g)(5)(ii)(C) of this section: The National Electrical Code, NFPA 70, contains guidelines for determining the type and design of equipment and installations that will meet this provision.

Figure S-1 - Example Marketing for Class I, ZOne 0, AEx ia IIC T6

[46 FR 4056, Jan. 16, 1981; 46 FR 40185, Aug. 7, 1981; 72 FR 7210, Feb. 14, 2007]
This paragraph covers the general requirements for all circuits and equipment operated at over 600 volts.
Aboveground conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic tubing, in rigid nonmetallic conduit, in cable trays, as busways, as cablebus, in other identified raceways, or as open runs of metal-clad cable suitable for the use and purpose. In locations accessible to qualified persons only, open runs of Type MV cables, bare conductors, and bare busbars are also permitted. Busbars shall be either copper or aluminum. Open runs of insulated wires and cables having a bare lead sheath or a braided outer covering shall be supported in a manner designed to prevent physical damage to the braid or sheath.
Conductors emerging from the ground shall be enclosed in approved raceways.
The braid on open runs of braid-covered insulated conductors shall be flame retardant or shall have a flame-retardant saturant applied after installation. This treated braid covering shall be stripped back a safe distance at conductor terminals, according to the operating voltage.
Metallic and semiconductor insulation shielding components of shielded cables shall be removed for a distance dependent on the circuit voltage and insulation. Stress reduction means shall be provided at all terminations of factory-applied shielding.
Metallic shielding components such as tapes, wires, or braids, or combinations thereof, and their associated conducting and semiconducting components shall be grounded.
Where cable conductors emerge from a metal sheath and where protection against moisture or physical damage is necessary, the insulation of the conductors shall be protected by a cable sheath terminating device.
Circuit breaker installations located indoors shall consist of metal-enclosed units or fire-resistant cell-mounted units. In locations accessible only to qualified employees, open mounting of circuit breakers is permitted. A means of indicating the open and closed position of circuit breakers shall be provided.
Fused cutouts installed in buildings or transformer vaults shall be of a type identified for the purpose. Distribution cutouts may not be used indoors, underground, or in metal enclosures. They shall be readily accessible for fuse replacement.
Where fused cutouts are not suitable to interrupt the circuit manually while carrying full load, an approved means shall be installed to interrupt the entire load. Unless the fused cutouts are interlocked with the switch to prevent opening of the cutouts under load, a conspicuous sign shall be placed at such cutouts reading: "WARNING -- DO NOT OPERATE UNDER LOAD."
Suitable barriers or enclosures shall be provided to prevent contact with nonshielded cables or energized parts of oil-filled cutouts.