- Gases used as refrigerants in refrigeration systems (see Section 605606).
- Compressed natural gas (CNG) for use as a vehicular fuel shall comply with Chapter 23, NFPA 52 and the International Fuel Gas Code.
- Cryogenic fluids shall comply with Chapter 55.
- LP-gas shall comply with Chapter 61 and the International Fuel Gas Code.
Permits shall be required as set forth in Section 105.6.
The following terms are defined in Chapter 2:
Pressure relief devices shall be provided to protect containers, cylinders and tanks containing compressed gases from rupture in the event of overpressure.
Exception: Cylinders, containers and tanks where exempt from the requirements for pressure relief devices specified by the standards of design listed in Section 5303.3.2.
Pressure relief devices shall be arranged to discharge upward and unobstructed to the open air in such a manner as to prevent any impingement of escaping gas upon the container, adjacent structures or personnel.
Exception: DOTn specification containers having an internal volume of 30 cubic feet (0.855 m3) or less.
Piping systems shall be marked in accordance with ASME A13.1. Markings used for piping systems shall consist of the content's name and include a direction-of-flow arrow. Markings shall be provided at each valve; at wall, floor or ceiling penetrations; at each change of direction; and at not less than every 20 feet (6096 mm) or fraction thereof throughout the piping run.
Exceptions:
- Piping that is designed or intended to carry more than one gas at various times shall have appropriate signs or markings posted at the manifold, along the piping and at each point of use to provide clear identification and warning.
- Piping within gas manufacturing plants, gas processing plants, refineries and similar occupancies shall be marked in an approved manner.
Compressed gas containers, cylinders and tanks shall be secured to prevent falling caused by contact, vibration or seismic activity. Securing of compressed gas containers, cylinders and tanks shall be by one of the following methods:
- Securing containers, cylinders and tanks to a fixed object with one or more restraints.
- Securing containers, cylinders and tanks on a cart or other mobile device designed for the movement of compressed gas containers, cylinders or tanks.
- Nesting of compressed gas containers, cylinders and tanks at container filling or servicing facilities or in sellers' warehouses not open to the public. Nesting shall be allowed provided that the nested containers, cylinders or tanks, if dislodged, do not obstruct the required means of egress.
Securing of compressed gas containers, cylinders and tanks to or within a rack, framework, cabinet or similar assembly designed for such use.
Exception: Compressed gas containers, cylinders and tanks in the process of examination, filling, transport or servicing.
Compressed gas containers, cylinders and tanks designed for valve protection caps or other protective devices shall have the caps or devices in place. When outlet caps or plugs are installed, they shall be in place.
Exception: Compressed gas containers, cylinders or tanks in use, being serviced or being filled.
Leaking, damaged or corroded compressed gas containers, cylinders and tanks shall be removed from service. Leaking, damaged or corroded compressed gas systems shall be replaced or repaired in accordance with the following:
- Compressed gas containers, cylinders and tanks that have been removed from service shall be handled in an approved manner.
- Compressed gas systems that are determined to be leaking, damaged or corroded shall be repaired to a serviceable condition or removed from service.
Vaults shall be listed by a nationally recognized testing laboratory.
Exception: Where approved by the fire code official, below-grade vaults are allowed to be constructed on site, provided that the design is in accordance with the International Building Code and that special inspections are conducted to verify structural strength and compliance of the installation with the approved design in accordance with Section 1707 of the International Building Code. Installation plans for below-grade vaults that are constructed on site shall be prepared by, and the design shall bear the stamp of, a professional engineer. Consideration shall be given to soil and hydrostatic loading on the floors, walls and lid; anticipated seismic forces; uplifting by ground water or flooding; and to loads imposed from above, such as traffic and equipment loading on the vault lid.
The vault shall completely enclose generation, compression, storage or dispensing equipment located in the vault. There shall not be openings in the vault enclosure except those necessary for vault ventilation and access, inspection, filling, emptying or venting of equipment in the vault. The walls and floor of the vault shall be constructed of reinforced concrete not less than 6 inches (152 mm) thick. The top of an above-grade vault shall be constructed of noncombustible material and shall be designed to be weaker than the walls of the vault to ensure that the thrust of any explosion occurring inside the vault is directed upward.
The top of an at- or below-grade vault shall be designed to relieve safely or contain the force of an explosion occurring inside the vault. The top and floor of the vault and the tank foundation shall be designed to withstand the anticipated loading, including loading from vehicular traffic, where applicable. The walls and floor of a vault installed below grade shall be designed to withstand anticipated soil and hydrostatic loading. Vaults shall be designed to be wind and earthquake resistant, in accordance with the International Building Code.
Compressed gas containers, cylinders and tanks, except those designed for use in a horizontal position, and all compressed gas containers, cylinders and tanks containing nonliquefied gases, shall be stored in an upright position with the valve end up. An upright position shall include conditions where the container, cylinder or tank axis is inclined as much as 45 degrees (0.80 rad) from the vertical.
Exceptions:
- Compressed gas containers with a water volume less than 1.3 gallons (5 L) are allowed to be stored in a horizontal position.
- Cylinders, containers and tanks containing nonflammable gases, or cylinders, containers and tanks containing nonliquefied flammable gases that have been secured to a pallet for transportation purposes.
Compressed gas containers, cylinders and tanks, except those designed for use in a horizontal position, and all compressed gas containers, cylinders and tanks containing nonliquefied gases, shall be used in an upright position with the valve end up. An upright position shall include conditions where the container, cylinder or tank axis is inclined as much as 45 degrees (0.80 rad) from the vertical. Use of nonflammable liquefied gases in the inverted position where the liquid phase is used shall not be prohibited provided that the container, cylinder or tank is properly secured and the dispensing apparatus is designed for liquefied gas use.
Exception: Compressed gas containers, cylinders and tanks with a water volume less than 1.3 gallons (5 L) are allowed to be used in a horizontal position.
Transfer of gases between containers, cylinders and tanks shall be performed by qualified personnel using equipment and operating procedures in accordance with CGA P-1.
Exception: The fueling of vehicles with CNG or CH2, conducted in accordance with Chapter 23.
Gas cabinets shall be constructed in accordance with Section 5003.8.6 and shall comply with the following:
- Exhausted to the exterior through dedicated exhaust duct system installed in accordance with Chapter 5 of the International Mechanical Code.
- Supply and exhaust ducts shall be enclosed in a 1-hour fire-resistance-rated shaft enclosure from the cabinet to the exterior. The average velocity of ventilation at the face of access ports or windows shall be not less than 200 feet per minute (1.02 m/s) with not less than 150 feet per minute (0.76 m/s) at any point of the access port or window.
- Provided with an automatic sprinkler system internal to the cabinet.
Indoor storage and use areas and storage buildings shall be provided with ventilation in accordance with Section 5004.3. Where mechanical ventilation is provided, the systems shall be operational during such time as the building or space is occupied.
Exceptions:
- A gas detection system complying with Section 5307.2.1 shall be permitted in lieu of mechanical ventilation.
- Areas containing insulated liquid carbon dioxide systems used in beverage dispensing applications shall comply with Section 5307.3.
Where insulated liquid carbon dioxide storage tanks, cylinders, piping and equipment are located indoors, rooms or areas containing storage tanks, cylinders, piping and equipment, and other areas where a leak of carbon dioxide is expected to accumulate, shall be provided with mechanical ventilation in accordance with Section 5004.3 and designed to maintain the room containing carbon dioxide at a negative pressure in relation to the surrounding area.
Exception: A gas detection system complying with Section 5307.3.2 shall be permitted in lieu of mechanical ventilation.
Where ventilation is not provided in accordance with Section 5307.3.1, a gas detection system shall be provided in rooms or indoor areas and in below-grade outdoor locations with insulated carbon dioxide systems. Carbon dioxide sensors shall be provided within 12 inches (305 mm) of the floor in the area where the gas is expected to accumulate or other approved locations. The system shall be designed as follows:
- Activates an audible and visible supervisory alarm at a normally attended location upon detection of a carbon dioxide concentration of 5,000 ppm (9000 mg/m3).
- Activates an audible and visible alarm within the room or immediate area where the system is installed upon detection of a carbon dioxide concentration of 30,000 ppm (54 000 mg/m3).
The following information shall be provided with the application for permit:
- Total aggregate quantity of liquid carbon dioxide in pounds or cubic feet at normal temperature and pressure.
- Location and total volume of the room where the carbon dioxide enrichment operation will be conducted. Identify whether the room is at grade or below grade.
- Location of containers relative to equipment, building openings and means of egress.
- Manufacturer's specifications and pressure rating, including cut sheets, of all piping and tubing to be used.
- A piping and instrumentation diagram that shows piping support and remote fill connections.
- Details of container venting, including but not limited to vent line size, material and termination location.
- Alarm and detection system and equipment, if applicable.
- Seismic support for containers.
A gas detection system complying with Section 916 shall be provided in rooms or indoor areas in which the carbon dioxide enrichment process is located, in rooms or indoor areas in which container systems are located, and in other areas where carbon dioxide is expected to accumulate. Carbon dioxide sensors shall be provided within 12 inches (305 mm) of the floor in the area where the gas is expected to accumulate or leaks are most likely to occur. The system shall be designed as follows:
- Activates a low-level alarm upon detection of a carbon dioxide concentration of 5,000 ppm (9000 mg/m3).
- Activates a high-level alarm upon detection of a carbon dioxide concentration of 30,000 ppm (54 000 mg/m3).
Activation of the low-level gas detection system alarm shall automatically:
- Stop the flow of carbon dioxide to the piping system.
- Activate the mechanical exhaust ventilation system.
- Activate an audible and visible supervisory alarm signal at an approved location within the building.
Activation of the high-level gas detection system alarm shall automatically:
- Stop the flow of carbon dioxide to the piping system.
- Activate the mechanical exhaust ventilation system.
- Activate an audible and visible evacuation alarm both inside and outside of the carbon dioxide enrichment area, and the area in which the carbon dioxide containers are located.
Rooms or indoor areas in which carbon dioxide enrichment is provided shall be maintained at a negative pressure in relation to the surrounding areas in the building. A mechanical ventilation system shall be provided in accordance with the International Mechanical Code that complies with all of the following:
- Mechanical ventilation in the room or area shall be at a rate of not less than 1 cfm per square foot [0.00508 m3/(s • m2)].
- When activated by the gas detection system, the mechanical ventilation system shall remain on until manually reset.
- The exhaust system intakes shall be taken from points within 12 inches (305 mm) of the floor.
- The ventilation system shall discharge to the outdoors in an approved location.
Hazard identification signs shall be posted at the entrance to the room and indoor areas where the carbon dioxide enrichment process is located, and at the entrance to the room or indoor area where the carbon dioxide containers are located. The sign shall be not less than 8 inches (200 mm) in width and 6 inches (150 mm) in height and indicate:
CAUTION — CARBON DIOXIDE GAS
VENTILATE THE AREA BEFORE ENTERING.
A HIGH CARBON DIOXIDE (CO2)
GAS CONCENTRATION
IN THIS AREA
CAN CAUSE ASPHYXIATION.