3103F.5.7 Tsunamis
A tsunami may be generated by an earthquake or a subsea or coastal landslide, which may induce large wave heights and excessive currents. The large wave or surge and the excessive currents are potentially damaging, especially if there is a tank vessel moored alongside the MOT wharf.
Tsunamis can be generated either by a distant or near source. A tsunami generated by a distant source (far field event) may allow operators to have an adequate warning for mitigating the risk by allowing the vessels to depart the MOT and go into deep water. For near-field events, with sources less than 500 miles away, the vessel may not have adequate time to depart. Each MOT shall have a "tsunami plan" describing what actions will be performed, in the event of a distant tsunami.
Recent tsunami studies have been completed for both Southern and Northern California. For the Ports of Los Angeles and Long Beach, one of these recent studies focused on near field tsunamis with predicted return periods of 5,000 to 10,000 years [3.15]. These maximum water levels (run-up) would not normally be used for MOT design. However, because the study also provides actual tidal records from recent distant tsunamis, it should be used for design.
The run-up value for Port Hueneme was obtained from an earlier study by Synolakis et al. [3.16].
Run up-values: Port of Los Angeles and Long Beach = 8 ft.
Port Hueneme = 11 ft.
For the San Francisco Bay, a recent study provides the maximum credible tsunami water levels and current speeds. These results are deterministic and are based on the most severe seismic sources that could reasonably impact MOTs in the San Francisco Bay [3.17]. Table 31F-3-6 provides values for the marine oil terminal locations within San Francisco Bay. Water levels could be positive or negative and current velocities may vary in direction. In order to determine the maximum run-up at a MOT, the largest values should be added to the mean high tide. Further details are available in [3.17].
Loads from tsunami-induced waves can be calculated for various structural configurations [3.18]. Tsunami wave heights in shallow water and particle kinematics can also be obtained. Other structural considerations include uplift and debris impact.
S.F. BAY LOCALE | MAXIMUM WATER LEVELS (ft.) | CURRENT VELOCITY (ft/sec) |
Richmond, outer | 7.5 | 4.9 |
Richmond, inner | 7.9 | 8.9 |
Martinez | 2.3 | 1.3 |
Selby | 2.6 | 1.6 |
Rodeo | 2.6 | 2.0 |
Benicia | 2.0 | 1.0 |