// CODE SNIPPET
Section 1613 Earthquake Loads Definations
JUMP TO FULL CODE CHAPTER
The following words and terms shall, for the purposes of this section, have the meanings shown herein.
ACTIVE FAULT/ACTIVE FAULT TRACE. A fault for which there is an average historic slip rate of 1 mm per year or more and geologic evidence of seismic activity within Holocene (past 11,000 years) times. Active fault traces are designated by the appropriate regulatory agency and/or registered design professional subject to identification by a geologic report.
ATTACHMENTS, SEISMIC. Means by which components and their supports are secured or connected to the seismic-force-resisting system of the structure. Such attachments include anchor bolts, welded connections and mechanical fasteners.
BASE. The level at which the horizontal seismic ground motions are considered to be imparted to the structure.
BOUNDARY ELEMENTS. Chords and collectors at diaphragm and shear wall edges, interior openings, discontinuities and reentrant corners.
BRITTLE. Systems, members, materials and connections that do not exhibit significant energy dissipation capacity in the inelastic range.
COLLECTOR. A diaphragm or shear wall element parallel to the applied load that collects and transfers shear forces to the vertical-force-resisting elements or distributes forces within a diaphragm or shear wall.
COMPONENT. A part or element of an architectural, electrical, mechanical or structural system.
DESIGN EARTHQUAKE. The earthquake effects that buildings and structures are specifically proportioned to resist in Sections 1613 through 1622.
DISPLACEMENT.
DISPLACEMENT RESTRAINT SYSTEM. A collection of structural elements that limits lateral displacement of seismically isolated structures due to the maximum considered earthquake.
EFFECTIVE DAMPING. The value of equivalent viscous damping corresponding to energy dissipated during cyclic response of the isolation system.
EFFECTIVE STIFFNESS.The value of the lateral force in the isolation system, or an element thereof, divided by the cor-responding lateral displacement.
HAZARDOUS CONTENTS. A material that is highly toxic or potentially explosive and in sufficient quantity to pose a significant life-safety threat to the general public if an uncontrolled release were to occur.
INVERTED PENDULUM-TYPE STRUCTURES. Structures that have a large portion of their mass concentrated near the top, and thus have essentially one degree of freedom in horizontal translation. The structures are usually T-shaped with a single column supporting the beams or framing at the top.
ISOLATION INTERFACE. The boundary between the upper portion of the structure, which is isolated, and the lower portion of the structure,which moves rigidly with the ground.
ISOLATION SYSTEM. The collection of structural elements that includes individual isolator units, structural elements that transfer force between elements of the isolation system and connections to other structural elements.
ISOLATOR UNIT. A horizontally flexible and vertically stiff structural element of the isolation system that permits large lateral deformations under design seismic load. An isolator unit is permitted to be used either as part of or in addition to the weight-supporting system of the building.
LOAD.
MAXIMUM CONSIDERED EARTHQUAKE. The most severe earthquake effects considered by this code.
NONBUILDING STRUCTURE. A structure, other than a building, constructed of a type included in Section 1622.
OCCUPANCY IMPORTANCE FACTOR. A factor assigned to each structure according to its seismic use group as prescribed in Table 1604.5.
SEISMIC DESIGN CATEGORY. A classification assigned to a structure based on its seismic use group and the severity of the design earthquake ground motion at the site.
SEISMIC-FORCE-RESISTING SYSTEM. The part of the structural system that has been considered in the design to provide the required resistance to the seismic forces prescribed herein.
SEISMIC FORCES. The assumed forces prescribed herein, related to the response of the structure to earthquake motions, to be used in the design of the structure and its components.
SEISMIC USE GROUP. A classification assigned to a building based on its use as defined in Section 1616.2.
SHEAR WALL. A wall designed to resist lateral forces parallel to the plane of the wall.
SHEAR WALL-FRAME INTERACTIVE SYSTEM. A structural system that uses combinations of shear walls and frames designed to resist lateral forces in proportion to their rigidities, considering interaction between shear walls and frames on all levels.
SITE CLASS. A classification assigned to a site based on the types of soils present and their engineering properties as defined in Section 1615.1.5.
SITE COEFFICIENTS. The values of, Fa, and, Fv, indicated in Tables 1615.1.2(1) and 1615.1.2(2), respectively.
STORY DRIFT RATIO.The story drift divided by the story height.
TORSIONAL FORCE DISTRIBUTION. The distribution of horizontal seismic forces through a rigid diaphragm when the center of mass of the structure at the level under consideration does not coincide with the center of rigidity (sometimes referred to as a "diaphragm rotation").
TOUGHNESS. The ability of a material to absorb energy without losing significant strength.
WIND-RESTRAINT SEISMIC SYSTEM. The collection of structural elements that provides restraint of the seismic-isolated structure for wind loads. The wind-restraint system may be either an integral part of isolator units or a separate device.
ACTIVE FAULT/ACTIVE FAULT TRACE. A fault for which there is an average historic slip rate of 1 mm per year or more and geologic evidence of seismic activity within Holocene (past 11,000 years) times. Active fault traces are designated by the appropriate regulatory agency and/or registered design professional subject to identification by a geologic report.
ATTACHMENTS, SEISMIC. Means by which components and their supports are secured or connected to the seismic-force-resisting system of the structure. Such attachments include anchor bolts, welded connections and mechanical fasteners.
BASE. The level at which the horizontal seismic ground motions are considered to be imparted to the structure.
BOUNDARY ELEMENTS. Chords and collectors at diaphragm and shear wall edges, interior openings, discontinuities and reentrant corners.
BRITTLE. Systems, members, materials and connections that do not exhibit significant energy dissipation capacity in the inelastic range.
COLLECTOR. A diaphragm or shear wall element parallel to the applied load that collects and transfers shear forces to the vertical-force-resisting elements or distributes forces within a diaphragm or shear wall.
COMPONENT. A part or element of an architectural, electrical, mechanical or structural system.
Component, equipment. A mechanical or electrical component or element that is part of a mechanical and/or electrical system within or without a building system.
Component, flexible. Component, including its attachments, having a fundamental period greater than 0.06 second.
Component, rigid. Component, including its attachments, having a fundamental period less than or equal to 0.06 second.
Component, flexible. Component, including its attachments, having a fundamental period greater than 0.06 second.
Component, rigid. Component, including its attachments, having a fundamental period less than or equal to 0.06 second.
DESIGN EARTHQUAKE. The earthquake effects that buildings and structures are specifically proportioned to resist in Sections 1613 through 1622.
DISPLACEMENT.
Design displacement. The design earthquake lateral displacement, excluding additional displacement due to actual and accidental torsion, required for design of the isolation system.
Total design displacement. The design earthquake lateral displacement, including additional displacement due to actual and accidental torsion, required for design of the isolation system.
Total maximum displacement. The maximum considered earthquake lateral displacement, including additional displacement due to actual and accidental torsion, required for verification of the stability of the isolation system or elements thereof, design of building separations and vertical load testing of isolator unit prototype.
Total design displacement. The design earthquake lateral displacement, including additional displacement due to actual and accidental torsion, required for design of the isolation system.
Total maximum displacement. The maximum considered earthquake lateral displacement, including additional displacement due to actual and accidental torsion, required for verification of the stability of the isolation system or elements thereof, design of building separations and vertical load testing of isolator unit prototype.
DISPLACEMENT RESTRAINT SYSTEM. A collection of structural elements that limits lateral displacement of seismically isolated structures due to the maximum considered earthquake.
EFFECTIVE DAMPING. The value of equivalent viscous damping corresponding to energy dissipated during cyclic response of the isolation system.
EFFECTIVE STIFFNESS.The value of the lateral force in the isolation system, or an element thereof, divided by the cor-responding lateral displacement.
HAZARDOUS CONTENTS. A material that is highly toxic or potentially explosive and in sufficient quantity to pose a significant life-safety threat to the general public if an uncontrolled release were to occur.
INVERTED PENDULUM-TYPE STRUCTURES. Structures that have a large portion of their mass concentrated near the top, and thus have essentially one degree of freedom in horizontal translation. The structures are usually T-shaped with a single column supporting the beams or framing at the top.
ISOLATION INTERFACE. The boundary between the upper portion of the structure, which is isolated, and the lower portion of the structure,which moves rigidly with the ground.
ISOLATION SYSTEM. The collection of structural elements that includes individual isolator units, structural elements that transfer force between elements of the isolation system and connections to other structural elements.
ISOLATOR UNIT. A horizontally flexible and vertically stiff structural element of the isolation system that permits large lateral deformations under design seismic load. An isolator unit is permitted to be used either as part of or in addition to the weight-supporting system of the building.
LOAD.
Gravity load (W).The total dead load and applicable portions of other loads as defined in Sections 1613 through 1622.
MAXIMUM CONSIDERED EARTHQUAKE. The most severe earthquake effects considered by this code.
NONBUILDING STRUCTURE. A structure, other than a building, constructed of a type included in Section 1622.
OCCUPANCY IMPORTANCE FACTOR. A factor assigned to each structure according to its seismic use group as prescribed in Table 1604.5.
SEISMIC DESIGN CATEGORY. A classification assigned to a structure based on its seismic use group and the severity of the design earthquake ground motion at the site.
SEISMIC-FORCE-RESISTING SYSTEM. The part of the structural system that has been considered in the design to provide the required resistance to the seismic forces prescribed herein.
SEISMIC FORCES. The assumed forces prescribed herein, related to the response of the structure to earthquake motions, to be used in the design of the structure and its components.
SEISMIC USE GROUP. A classification assigned to a building based on its use as defined in Section 1616.2.
SHEAR WALL. A wall designed to resist lateral forces parallel to the plane of the wall.
SHEAR WALL-FRAME INTERACTIVE SYSTEM. A structural system that uses combinations of shear walls and frames designed to resist lateral forces in proportion to their rigidities, considering interaction between shear walls and frames on all levels.
SITE CLASS. A classification assigned to a site based on the types of soils present and their engineering properties as defined in Section 1615.1.5.
SITE COEFFICIENTS. The values of, Fa, and, Fv, indicated in Tables 1615.1.2(1) and 1615.1.2(2), respectively.
STORY DRIFT RATIO.The story drift divided by the story height.
TORSIONAL FORCE DISTRIBUTION. The distribution of horizontal seismic forces through a rigid diaphragm when the center of mass of the structure at the level under consideration does not coincide with the center of rigidity (sometimes referred to as a "diaphragm rotation").
TOUGHNESS. The ability of a material to absorb energy without losing significant strength.
WIND-RESTRAINT SEISMIC SYSTEM. The collection of structural elements that provides restraint of the seismic-isolated structure for wind loads. The wind-restraint system may be either an integral part of isolator units or a separate device.
Related Code Sections
Section 1613 Structural Design, Earthquake Loads Definations
( W ) .The total dead load and applicable portions of other loads as defined in Sections 1613 through 1622.
MAXIMUM CONSIDERED EARTHQUAKE . The ...
1620.4.4 Structural Design, Collector Elements
shall have the design strength to resist the earthquake loads as defined in the special load combinations of Section 1605.4.
Exception : In ...
NYC Building Code 2008 > 16 Structural Design > 1620 Earthquake Loads — Design, Detailing Requirements and Structural Component Load Effects > 1620.4 Seismic Design Category D > 1620.4.4 Collector Elements
Section 1613 Structural Design, Earthquake Loads
effects considered by this standard more specifically defined in the following two terms. MAXIMUM CONSIDERED EARTHQUAKE GEOMETRIC MEAN (MCE G ) PEAK ...
1908.2 Concrete, General
: 21.12.6.8 At the critical sections for columns defined in 11.12.1.2, two-way shear caused by factored gravity loads shall not exceed 0.4fV c , where V c ...
1617.1.1.1 Structural Design, Seismic Load Effect, E
counteract, the seismic load, E, for usein Equations 16-6, 16-12 and 16-18 shall be defined by Equation 16-51.
E = ρQ E - 0.2 S DS D ...
NYC Building Code 2008 > 16 Structural Design > 1617 Earthquake Loads — Minimum Designlateral Force and Related Effects > 1617.1 Seismic Load Effect E and EM > 1617.1.1 Seismic Load Effects, E and EM (For Use in the Simplified Analysis Procedure of Section 1617.5) > 1617.1.1.1 Seismic Load Effect, E